
CS 3120 (DMT2)
Theory of Computation

Wei-Kai Lin

High-Level Introduction

(A couple of examples)

Goals (syllabus in one sentence)

To understand the power and limitations
of computation

Our approach to this goal

•Define computation formally

•Answer two important questions:
• Q: What is computable with “unlimited resources”

(computability)
• Q: What is computable with “limited resources”

(complexity)

Concrete analogy: LEGO

• Build cool stuff from bricks

Computation
&

Resources

Computable
(result)

Main example: Add and Multiply

Step 0: deciding about representation

• How to write (represent / encode) numbers?

• Only then can we give them as inputs to “algorithms.”

• How should we represent a (possibly large) number?

Bad representations

• Stone age: tally marks
(30,000 years ago)

• Roman numerals

• In “additive” systems like Roman’s, characters carry their value.
• Sun to earth distance in kilometers will require > 100,000 symbols!

Place-value number system

• Babylonian (2000BC)

• The number: 𝑥𝑘𝑥𝑘−1𝑥𝑘−2 …𝑥2𝑥1𝑥0

Means: σ𝑥𝑖 ⋅ 𝑏
𝑖

• Extremely important development in history!

Is the Babylonian representation “optimal”?

• Optimal: represent more numbers in the same length

• Length 𝑘 is 𝑘 digits
• We can write 2𝑘 distinct numbers (b = 2)
• We can not write 2𝑘 + 1 distinct numbers

(by pigeon hole principle)

• Yes, optimal

Integer Addition

• The grade school algorithm:

• Is this algorithm “optimal” ?

1234
+ 3120

Integer Multiplication via repeated addition

Input: Non-negative integers x,y
Output: Product x⋅y

1. Let result←0
2. for{i=1,…,y}

result ← result + x
3. endfor
4. return result

Grade-school multiplication

1. Write 𝑥 = 𝑥𝑛−1𝑥𝑛−2⋯𝑥0 and 𝑦 = 𝑦𝑚−1𝑦𝑚−2⋯𝑦0 in decimal
place-value notation. (𝑥0 is the ones digit of 𝑥, 𝑥1 is the tens digit,
etc.)

2. Let result←0
3. for{i=0,…,n−1}

a) for{j=0,…,m−1}
result ← result + 10𝑖+𝑗 ⋅ 𝑥𝑖 ⋅ 𝑦𝑗

b) endfor
4. endfor
5. return result

Comparing Algorithms

• Suppose we multiply 2 numbers, each of 100 digits

• Method 1 requires about 10100 operations (additions).

• Method 2 requires about 100 × 100 “simple operations”.

• Universe’s age is < 1018 seconds

Can we do better?
Karatsuba’s multiplicationGrade-school multiplication

𝑂(𝑛2)

Yes!

Karatsuba’s, recursion

Base case:
ҧ𝑥 and 𝑥 are 1 digit each, and so do ത𝑦 and 𝑦.

Perform 3 mul (and then add/sub)

Recursive case:
For n-bit multiplication, let
 ҧ𝑥, 𝑥, ത𝑦, and 𝑦 are n/2-digit each.
Recursively call n/2-digit Karatsuba on each of 3 mul
(and then add/sub)

Analyzing Karatsuba’s method

• Let 𝑇(𝑛) be the time it takes to multiply two 𝑛 digit numbers:

• 𝑇 𝑛 ≤ 3 𝑇
𝑛

2
+ 𝐶 ⋅ 𝑛

for a constant 𝐶 depending on how we do addition

• Solving the recursion, gives 𝑇 𝑛 ≤ 𝑛log2 3 ≤ 𝑂(𝑛1.58)

Can we do even better?

• Yes! using the so-called “Fourier analysis”

• Fourier Transform:
map a number 𝑥 into 𝐹𝐹𝑇(𝑥) such that

𝑥 ⋅ 𝑦 = 𝐹𝐹𝑇−1 𝐹𝐹𝑇 𝑥 + 𝐹𝐹𝑇 𝑦

• 𝐹𝐹𝑇 … , 𝐹𝐹𝑇−1(…) can be computed in time ~ 𝑛 log 𝑛where 𝑛 is
the bit length of 𝑥 (this way of computing is known as fast Fourier
Transform)

Can we do even better than 𝑂(𝑛 log 𝑛)?

It is a major open question!

Examples of Other Computational Tasks

• Adding two (say 𝑛 digit) numbers
• Multiplying two integers
• Factoring integers into primes?
• Solving linear sets of equations (with noisy equations?)
• Solving the Travelling Salesman Problem
• Solving polynomial equations for integer solutions

• Software verification
(eg, never writes into a dangerous memory location)

Further questions: important but not our focus

• Is randomness useful?

• Do problems become easier if we just want “approximate”
solutions?

• Is there any “benefit” in hardness of computational problems?

• Do laws of physics help with computational power?

Roadmap for this course

1. Start from the simple (but not too limiting) circuits model

2. Finite automata and regular expressions

3. Free unlimited accessible memory (Turing/RAM machines)

Main messages of today

• It is both intellectually and financially worth to understand
computation

• The efficiency gain through algorithmic design could be
significantly more than hardware improvement

• We want to understand the optimality of our results.
Understanding the limitations is also called: “negative results”

Logistics and more on Syllabus

Meetings

• Tuesdays and Thursdays, 12:30 – 1:45pm in Rice 130

• https://weikailin.github.io/cs3120-toc

• We have implicitly talked about the objectives and highlights

•Best way to learn:
participate in classes, ideally ask questions

https://weikailin.github.io/cs3120-toc

Preparation
• Official Prerequisites: To enroll in cs3120, you must have

completed CS 3100 (DMT 1) and CS 3010 (DSA2) with a grade of
C- or better.

• Expected Background: We expect you entering cs3120 to be
comfortable using proof techniques from DMT1 (e.g., proof-by-
contradiction, quantifiers, and induction). From DSA2, we expect
you to have good understanding of the most common asymptotic
operators and using them

• Programming: We also expect you to be able to read and write
short programs. We will use the Python programming language for
some assignments.

Textbook/resources

• Boaz Barak, Introduction to Theoretical Computer Science.
https://introtcs.org/public/index.html
https://files.boazbarak.org/introtcs/lnotes_book.pdf

• (Differ from Prof. Floryan)

• Other resources might be posted too, occasionally.

• The slides will be posted on the course’s page
• The (zoom) video recording of the classes accessible through

Canvas.
The Zoom link is NOT for attending remotely.

https://introtcs.org/public/index.html
https://files.boazbarak.org/introtcs/lnotes_book.pdf

Teaching Team

• 5 amazing TA!

• Office hours is on course Google calendar (to schedule rooms)

Haolin Alice Liran Ethan Nicole

Communication

• Calendar: We will keep course deadlines, office hours, and other
events on a public google calendar. You are expected to
subscribe to this calendar. (survey)

• Ed Education: We will use the website for most other course
communications. We expect you to receive messages we send to
the “General” channel as well as any direct messages we send to
you.
Link to join: https://edstem.org/us/join/3DvewM (survey)

https://edstem.org/us/join/3DvewM

Assignments and Exams
• Problem Sets are due most weeks in the course (typically on

Mondays at 10:00pm). We expect students to read and follow
these carefully.
You will be given Overleaf templates and will submit your pdfs.

• Pre-reading and reflection. You are asked to pre-read and reflect
on course material, and you are asked to answer simple
questions, almost weekly. You shall submit at least 12 times.

• Exams. We will have two exams in the course:
Midterm: In class on Thursday, 6 March 2023.
Final: Thursday, 2 May, 2:00pm - 5:00pm.

Honor expectation

• We believe strongly in the value of a community of trust and
expect all the students in this class to contribute to strengthening
and enhancing that community.

• All students are required to read, understand, and sign the course
pledge. (survey)

Additional Info

• Special Circumstances: If you require access accommodation,
please contact the Student Disability Access Center (SDAC)

• Other Accommodations: It is the University’s policy and practice
to reasonably accommodate students so that they do not
experience an adverse academic consequence when serious
personal issues conflict with academic requirements. Religious
reasons, family obligations, personal crises, and extraordinary
opportunities could all be potentially valid reasons for
accommodations.

What to do next?

• Reflection:
Registration Survey, due tomorrow (Wednesday) 10pm:
https://forms.office.com/r/pPBLzW1TSD

https://forms.office.com/r/pPBLzW1TSD

	Slide 1: CS 3120 (DMT2) Theory of Computation
	Slide 2: High-Level Introduction
	Slide 3: Goals (syllabus in one sentence)
	Slide 4: Our approach to this goal
	Slide 5: Concrete analogy: LEGO
	Slide 6: Main example: Add and Multiply
	Slide 7: Step 0: deciding about representation
	Slide 8: Bad representations
	Slide 9: Place-value number system
	Slide 10: Is the Babylonian representation “optimal”?
	Slide 11: Integer Addition
	Slide 12: Integer Multiplication via repeated addition
	Slide 13: Grade-school multiplication
	Slide 14: Comparing Algorithms
	Slide 15: Can we do better?
	Slide 16: Karatsuba’s, recursion
	Slide 17: Analyzing Karatsuba’s method
	Slide 18
	Slide 19: Can we do even better?
	Slide 20: Can we do even better than 𝑂(𝑛 log 𝑛)?
	Slide 21: Examples of Other Computational Tasks
	Slide 22: Further questions: important but not our focus
	Slide 23: Roadmap for this course
	Slide 24: Main messages of today
	Slide 25: Logistics and more on Syllabus
	Slide 26: Meetings
	Slide 27: Preparation
	Slide 28: Textbook/resources
	Slide 29: Teaching Team
	Slide 30: Communication
	Slide 31: Assignments and Exams
	Slide 32
	Slide 33: Honor expectation
	Slide 34: Additional Info
	Slide 35: What to do next?

