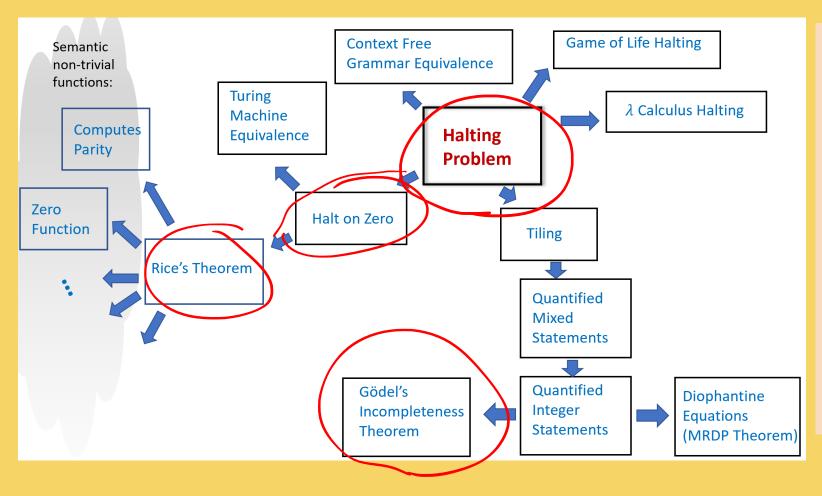
PS10 due next Friday, Apr 25.



Class 23: Complexity, Class P

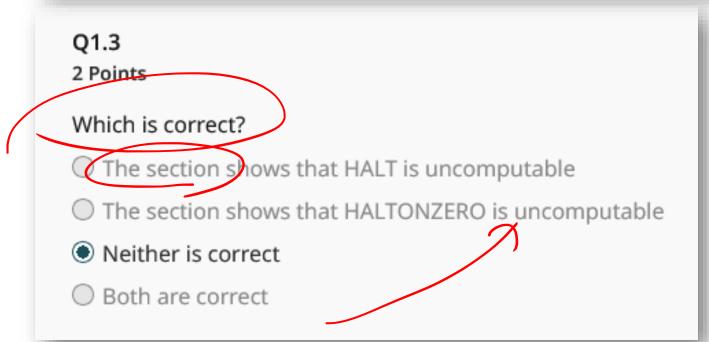
University of Virginia

cs3120: DMT2

Wei-Kai Lin

Read the textbook example of halting on zero (Sec 9.1.4):

https://introtcs.org/public/lec_08_uncomputability.html#example-halting-onthe-zero-problem



Algorithm B for HALT using A.

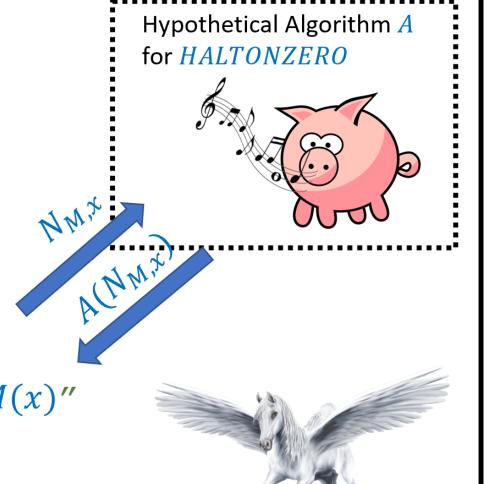
Input: TM M, string x

Operation:

1. Write code of TM $N_{M,x}$:

"Ignore input and run M(x)"

2. Return $A(N_{M,x})$



Michael Sipser: "If pigs could whistle then horses could fly".

Recap: Semantic Property

Two machines M_1, M_2 are functionally equivalent (denoted $M_1 \equiv M_2$) if $\forall x \in \{0,1\}^*, M_1(x) = M_2(x)$

A function $F: \{0,1\}^* \to \{0,1\}$, defined on Turin machines, is **semantic** if for every pair of functionally equivalent TMs (M_1, M_2) , $F(M_1) = F(M_2)$.

Namely, this is a property of the **function**/language of the machine, not of the **behavior** of the machines

Recap: Rice's Theorem

If F is a sematic property, then either F is **not computable**, or F is trivial

```
Trivial: for all Turing machine M, F(M) = 0 F(M) = 1
```

Complexity: the "cost" of computation

How have we considered "reasonable cost" so far?

Cost-Sensitive Computing

Model of Computation	What to Count	Complexity Classes and Results
Boolean Circuits / NAND-CIRC programs	# gates	
DFA / NFA / Regexp	lon of regexp or # states of DFA time complexity	
? (Algorithms course)	time complexity the basic ops (eg. 4)	companisms)
Turing Machines		

Cost-Sensitive Computing

Model of Computation	What to Count	Complexity Classes and Results
Boolean Circuits / NAND-CIRC programs	Gates in Circuit Lines in NAND-CIRC program	$SIZE_{n,m}(s)$ Size Hierarchy Theorem
DFA / NFA / Regexp	Number of States Length of Regexp	NFA with n states \sim DFA with 2^n
? (Algorithms course)	Constant time-ish operations (?)	$Sorting \in \Theta(n \log n)$ (number of comparisons to comparison-sort n items)
Turing Machines	Attronsit during M(x) I len of M	- TIME

Costs of Turing Machines

Length of description ("Kolomolgorov Complexity", Class 21)

Amount of tape needed ("Space Complexity")

Number of steps before halting ("Running Time Complexity")

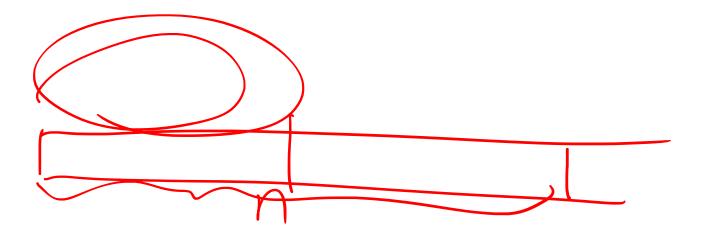
Relating Time and Space

If a TM running on an n-length input executes in $23(n^2)$! steps, what can we say about its space complexity?

Relating Space and Time

If a TM running on an n-length input executes in $\Theta(n)$ space, what can we say about its running time?

NO. If additionally, TM halts



17 Space bounded computation

PLAN: Example of space bounded algorithms, importance of preserving space. The classes L and PSPACE, space hierarchy theorem, PSPACE=NPSPACE, constant space = regular languages.

We will not talk more about space complexity, but it is related to many topics in this course.

Defining TIME Complexity Classes

 $TIME_{\mathsf{TM}}(T(n))$ is the set of Boolean functions for which a Turing Machine M exists such that M halts after at most T(n) steps for all n-bit input and M computes the function.

Definition 13.1 (Running time (Turing Machines))

Let $T:\mathbb{N}\to\mathbb{N}$ be some function mapping natural numbers to natural numbers. We say that a function $F:\{0,1\}^*\to\{0,1\}^*$ is computable in T(n) Turing-Machine time (TM-time for short) if there exists a Turing machine M such that for every sufficiently large n and every $x\in\{0,1\}^n$, when given input x, the machine M halts after executing at most T(n) steps and outputs F(x).

We define $TIME_{TM}(T(n))$ to be the set of Boolean functions (functions mapping $\{0,1\}^*$ to $\{0,1\}$) that are computable in T(n) TM time.

Boolean functions: $\{0,1\}^* \rightarrow \{0,1\}$

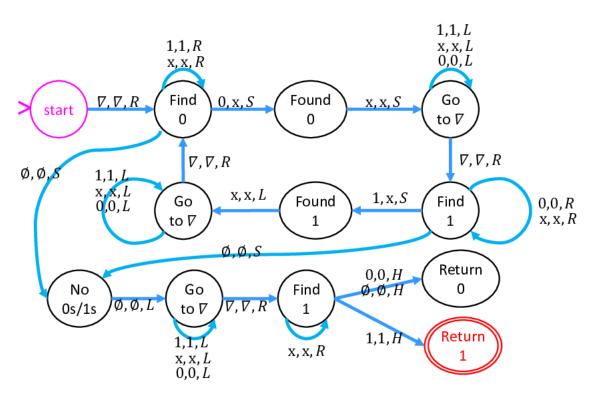
What functions are in $TIME_{TM}$ (28) F(x) = 0TMM Computes + on every x ---.

Boolean functions: $\{0,1\}^* \rightarrow \{0,1\}$

What functions are in $TIME_{TM}(28)$?

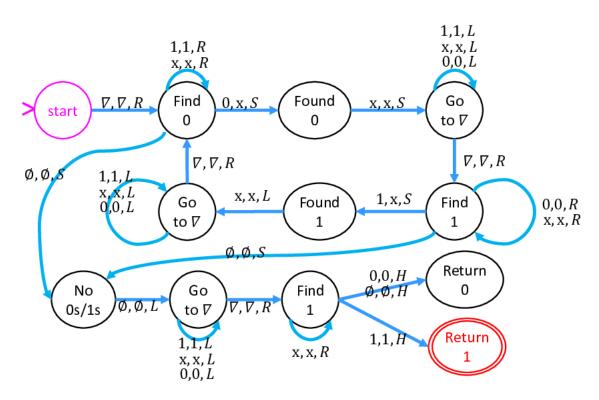
```
Definition. The execution of a TM, M = (\Sigma, k, \delta) on
input x \in \{0, 1\}^* is this process:
1. Initialize T as \triangleright, x_0, x_1, \dots, x_{|x|-1}, \emptyset, \emptyset, \dots
2. Initialize natural number variables, i = 0, s = 0.
3. repeat
    1. (s', \sigma', D) = \delta(s, T[i])
    2. s := s', T[i] := \sigma'
     3. if D = \mathbf{R}: i := i + 1
        if D = L: i := \max\{i - 1, 0\}
        if D = H: break
4. If the process finishes, the output is M(x) =
T[1], ..., T[m] where m > 0 is the smallest integer,
T[m+1] \notin \{0,1\}. Otherwise, M(x) = \bot.
```

Is the MAJ machine in $TIME_{TM}(17n^4)$?

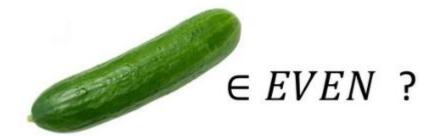


MAJ machine from PS8

Is the MAJ machine in $TIME_{TM}(17n^4)$?



MAJ machine from PS8

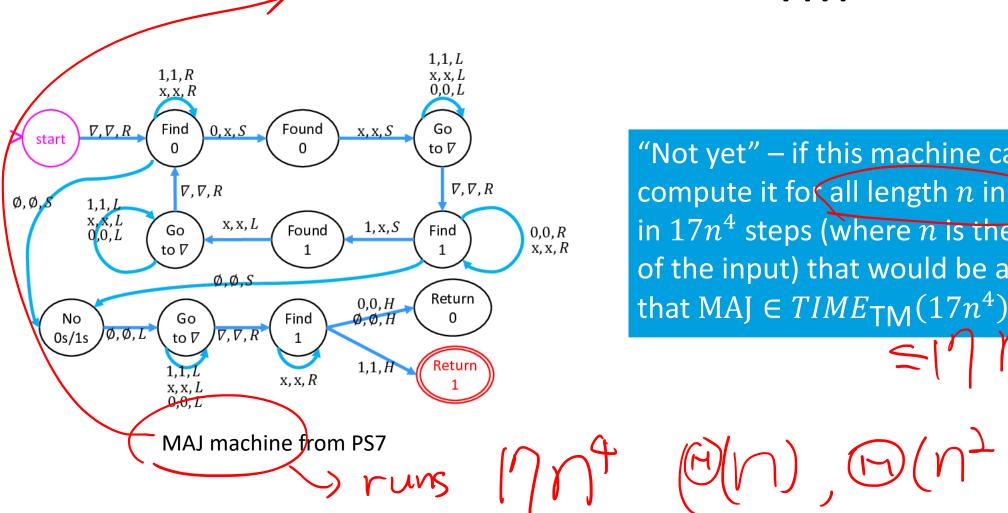


No, but this is a trick question like asking if there is an Orange in the set.

 $TIME_{TM}(17n^4)$ is a set of **Boolean** functions. It is about whether there exists a TM that can compute a function within $17n^4$ steps (where n is the size of the input).

Is the MAJ function in $TIME_{TM}(17n^4)$?

Is the MAJ function in $TIME_{TM}(17n^4)$?



"Not yet" – if this machine can compute it for all length n inputs in $17n^4$ steps (where n is the size of the input) that would be a proof that MAJ $\in TIME_{TM}(17n^4)$

Class P

Definition: Complexity Class: P

A class for "Polynomial Time"

Class
$$\mathbf{P} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

Note: TCS book definition is $\mathbf{P} = \bigcup_{c \in \{1,2,3,\dots\}} TIME_{TM}(n^c)$

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

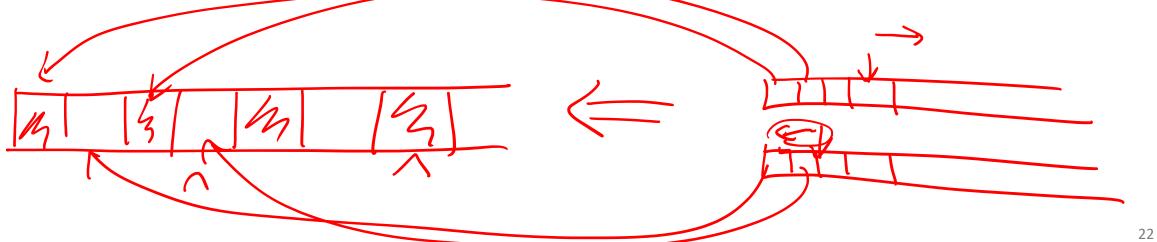
One-way infinite tape TM

$$\mathbf{P}_{TM2w} = \bigcup_{c \in \mathbb{N}} TIME_{TM2w}(n^c)$$

Two-way infinite tape TM

$$\mathbf{P}_{TM\times 2} = \bigcup_{c\in\mathbb{N}} TIME_{TM\times 2}(n^c)$$

Two-tape TM (with a read/write head on each tape)

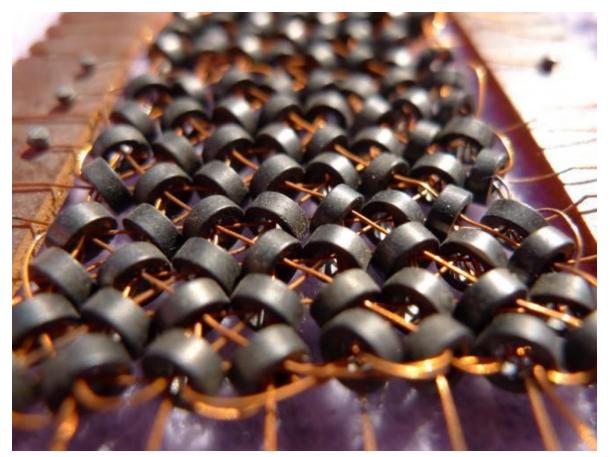


Tape-Based Memory

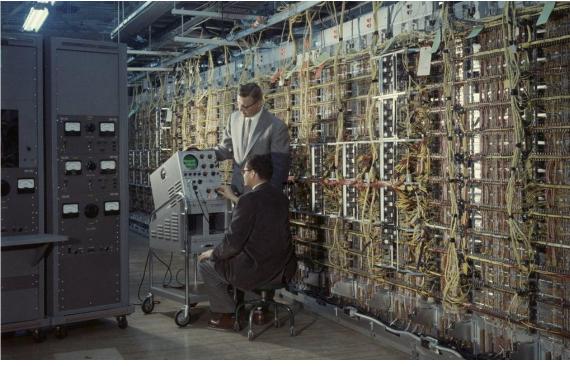
Computer-Science Center University of Virginia Burroughs 205 Computer 1960-1964

A tape was a reasonable memory model for practical computers until memories got big

Random-Access Memory



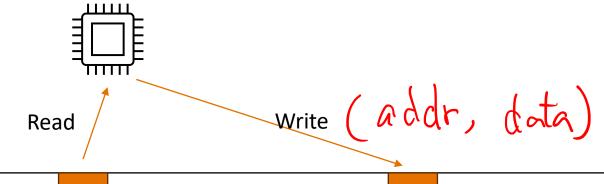
Magnetic Core Memory (Jay Forrester, 1951) MIT tried to license patent for 2 cents/bit!



Semi-Automatic Ground Environment FSQ-7 memory: 65,536 (2¹⁶) 32-bit words

Random-Access Memory (RAM) Machines

- Unbounded memory array, can be read and written using natural number indices
- CPU:
 - 1. read or write an array "word" by index/address
 - 2. compute any function on constant number of "words" (registers)



RAM Machine Complexity

- Unbounded memory array, can be read and written using natural number indices
- CPU:
 - 1. read or write an array "word" by index/address
 - 2. compute any function on constant number of "words" (registers)

$$\mathbf{P}_{RAM} = \bigcup_{c \in \mathbb{N}} TIME_{RAM}(n^c)$$

Is
$$P_{RAM} = P_{TM}$$
?

$$\mathbf{P}_{\text{RAM}} = \bigcup_{c \in \mathbb{N}} TIM E_{\text{RAM}}(n^c)$$

$$\mathbf{P}_{\text{RAM}} = \mathbf{P}_{\text{TM} \times 4} = \mathbf{P}_{\text{TM}}$$

We can simulate RAM memory with a multi-tape TM:

- Have a second tape to keep track of current location (increment each time we move right, decrement for left)
- Have a third tape to record the target location
- Move until the two tapes match (maybe need another tape?)

Details not important (only impact c) – but if you don't like this sketchy argument see TCS 8.2 ("The gory details (optional)")

– Whatever a RAM machine can compute in T(n) steps, a tape TM can compute $T(n)^4$ time (Theorem 13.5)

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

One-way infinite tape TM

$$\mathbf{P}_{TM2w} = \bigcup_{c \in \mathbb{N}} TIME_{TM2w}(n^c)$$

Two-way infinite tape TM

$$\mathbf{P}_{RAM} = \bigcup_{c \in \mathbb{N}} TIME_{RAM}(n^c)$$

RAM machine

$$\mathbf{P}_{TM} = \mathbf{P}_{TM2w} = \mathbf{P}_{RAM}$$

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

One-way infinite tape TM

$$\mathbf{P}_{TM2w} = \bigcup_{c \in \mathbb{N}} TIME_{TM2w}(n^c)$$

Two-way infinite tape TM

$$\mathbf{P}_{RAM} = \bigcup_{c \in \mathbb{N}} TIME_{RAM}(n^c)$$

RAM machine

$$P_{\text{Python}} = \bigcup_{c \in \mathbb{N}} TIME_{\text{Python}}(n^c)$$
 Idealized **Python** interpreter that the point of the python interpreter of the python interpre

$$P_{TM} = P_{TM2w} = P_{RAM} = P_{Python}$$

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

One-way infinite tape TM

$$\mathbf{P}_{TM2w} = \bigcup_{c \in \mathbb{N}} TIME_{TM2w}(n^c)$$

Two-way infinite tape TM

$$\mathbf{P}_{RAM} = \bigcup_{c \in \mathbb{N}} TIME_{RAM}(n^c)$$

RAM machine

$$P_{\text{Python}} = \bigcup_{c \in \mathbb{N}} TIME_{\text{Python}}(n^c)$$
 Idealized Python interpreter

$$\mathbf{P}_{TM} = \mathbf{P}_{TM2w} = \mathbf{P}_{RAM} = \mathbf{P}_{Python}$$

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

$$\mathbf{P}_{TM2w} = \bigcup_{c \in \mathbb{N}} TIME_{TM2w}(n^c)$$

$$\mathbf{P}_{RAM} = \bigcup_{c \in \mathbb{N}} TIME_{RAM}(n^c)$$

$$\mathbf{P}_{\mathrm{Python}} = \bigcup_{c \in \mathbb{N}} TIME_{\mathrm{Python}}(n^c)$$

$$(\mathbf{P}_{\mathrm{QC}}) = \bigcup_{c \in \mathbb{N}} TIME_{\mathrm{QC}}(n^c)$$

One-way infinite tape TM

Two-way infinite tape TM

RAM machine

- READ(i), WRITE(i, val), ADD(a,b), MULT(a,b)
- JUMP(k)

Idealized **Python** interpreter

Quantum Computer

$$P_{TM} = P_{TM2w} = P_{RAM} = P_{Python} = P_{QC}$$

Functions in P? Blem Tur

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

$$= \mathbf{P}_{Python} = \bigcup_{c \in \mathbb{N}} TIME_{Python}(n^c)$$

SORTING

Input: A list of n natural numbers, $x_1, x_2, x_3, \ldots, x_n$.

Output: An ordering of the input list, $x_{i_1}, x_{i_2}, \ldots, x_{i_n}$ where $\{i_1\} \cup \{i_2\} \cup \ldots \{i_n\} = \{1, 2, \ldots, n\}$ and for all $k \in \{1, 2, \dots, n-1\}, x_{i_k} \le x_{i_{k+1}}$.

Functions in P?

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^{c})$$
$$= \mathbf{P}_{Python} = \bigcup_{c \in \mathbb{N}} TIME_{Python}(n^{c})$$

$$HALTS(w,x) = \begin{cases} 1, & \text{if } TM_w \text{ terminates on } x \\ 0, & \text{otherwise} \end{cases}$$

Functions not in P

$$\mathbf{P}_{TM} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^{c})$$
$$= \mathbf{P}_{Python} = \bigcup_{c \in \mathbb{N}} TIME_{Python}(n^{c})$$

$$HALTS(w,x) = \begin{cases} 1, & \text{if } TM_w \text{ terminates on } x \\ 0, & \text{otherwise} \end{cases}$$

$$N_0 \text{ TM M who } HALTS \notin P$$

 $TIME_{\mathsf{TM}}(T(n))$ is the set of Boolean functions for which a Turing Machine M exists such that M computes the function and M halts after at most T(n) steps.

Functions in P?

LongestPath **Input:** A finite graph G = (V, E), two vertices, $s, t \in V$, and a path length, $\ell \in \mathbb{N}$. **Output:** If there is a simple path from s to t in G of length at least ℓ , 1. Otherwise, 0.

Definition: a *simple path* in a graph G = (V, E) from $s, t \in V$ is a path from s to t where no node is repeated.

Functions in P?

LongestPath

Input: A finite graph G = (V, E), two vertices, $s, t \in V$, and a path length, $\ell \in \mathbb{N}$.

Output: If there is a simple path from s to t in G of length at least ℓ , 1. Otherwise, 0.

LongestPath is **not known** to be in **P**: it might be, it might not be. (We'll see a more about this in future classes...)

Definition: a *simple path* in a graph G = (V, E) from $s, t \in V$ is a path from s to t where no node is repeated.

"Exponential Time": EXP

$$P = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c)$$

EXP =
$$\bigcup_{c \in \mathbb{N}} TIME_{TM}(2^{n^c})$$

Is LongestPath in EXP?

$$\mathbf{P} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(n^c) \qquad \mathbf{EXP} = \bigcup_{c \in \mathbb{N}} TIME_{TM}(2^{n^c})$$

LongestPath

Input: A finite graph G = (V, E), two vertices, $s, t \in V$, and a path length, $\ell \in \mathbb{N}$.

Output: If there is a simple path from s to t in G of length at least ℓ , 1. Otherwise, 0,

