CS 6222, Homework 2

Instructor: Wei-Kai Lin
Total points: 30. Points are noted after each problem.
Problem 1 (6 pts). This problem will prove the Chebyshev's bound on $\pi(n)$, that is, for all $n>1$,

$$
\begin{equation*}
\pi(n) \geq \frac{n}{2 \log n} \tag{1}
\end{equation*}
$$

where \log is base 2 .
(a) For any $n>1, n \in \mathbb{N}$, let $N:=\binom{2 n}{n}$. Show that $N>2^{n}$.
(b) For any $m \in \mathbb{N}$, consider the prime factorization of the factorial m !, which can be written as

$$
m!=\prod_{p \text { prime }} p^{\nu_{p}(m!)}
$$

where $\nu_{p}(x) \in \mathbb{N}$ denotes the maximal power of p such that $p^{\nu_{p}(x)}$ divides x. Show that for any p, it holds that $\nu_{p}(m!)=\sum_{j=1,2, \ldots}\left\lfloor m / p^{j}\right\rfloor$.
(c) Take \log on both sides of (a), and then show that

$$
\begin{equation*}
\sum_{p \text { prime }}\left(\nu_{p}((2 n)!)-2 \nu_{p}(n!)\right) \cdot \log p=\sum_{\text {prime } p<2 n}\left(\nu_{p}((2 n)!)-2 \nu_{p}(n!)\right) \cdot \log p>n \tag{2}
\end{equation*}
$$

(d) Show that for any prime p, any $n>1$,

$$
\nu_{p}((2 n)!)-2 \nu_{p}(n!) \leq \log _{p}(2 n)=\frac{\log (2 n)}{\log p} .
$$

(e) Plug (d) into equation (2) and then show that $\pi(2 n) \cdot \log (2 n)>n$, and thus Equation (1) holds for all even n.
(f) Show Equation (1) holds for all odd $n>1$.

Problem 2 (3pts). Let G be a finite group with the binary operator \otimes. Let $H \subseteq G$ be a subset of G. Suppose that

- Identity: $1 \in H$ (where 1 is the identity of G), and
- Closure: for all $a, b \in H$, it holds that $a \otimes b \in H$.

Prove that H is a subgroup of G (by proving associativity and inverse for \otimes).
Problem 3 (2pts). We say $N \in \mathbb{N}$ is a perfect power if $N=m^{k}$ for some $m, k \in \mathbb{N}, m>1$. Consider any input $N<2^{n}$ that is represented by an n-bit string. Show that perfect power can be decided in time polynomial in n through following steps. Notice that, we can only perform constant-bit computation in unit time, and thus the addition, multiplication, or exponentiation of n-bit integers take time $O(n), O\left(n^{2}\right), O\left(n^{3}\right)$ respectively.
(a) Show that if $N=m^{k}$, then $k<n$.
(b) Since there are only $O(n)$ possible k 's, it suffices to decide if there exists integer m such that $m^{k}=N$. Write an algorithm to do that in time $O\left(n^{4}\right)$. Hint: binary search or Newton's method.
Problem 4 (5pts). Recall that assuming factoring is hard, then the following function $f_{\text {mul }}: \mathbb{N}^{2} \rightarrow$ \mathbb{N}

$$
f_{\mathrm{mul}}(x, y)= \begin{cases}1 & \text { if } x=1 \text { or } y=1 \\ x \cdot y & \text { o.w. }\end{cases}
$$

is a weak OWF. Show that efficient prime testing is not needed in the proof. Specifically, assume for contradiction, $f_{\text {mul }}$ is not a weak OWF; that is, for any polynomial $q(n)$, there exists an NUPPT adversary A such that for infinitely many $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x, y \leftarrow\{0,1\}^{n}, z \leftarrow x \cdot y: f_{\mathrm{mul}}\left(A\left(1^{n}, z\right)\right)=z\right]>1-\frac{1}{q(n)} .
$$

Then, show the following NUPPT B takes as input a product z of two primes and then outputs a prime factor with non-negligible probability.

Algorithm $B\left(1^{n}, z\right)$:

1. Run $\left(x^{\prime}, y^{\prime}\right) \leftarrow A\left(1^{n}, z\right)$.
2. If $x^{\prime} \neq 1$ and $y^{\prime} \neq 1$ and $x^{\prime} \cdot y^{\prime}=z$, output $\left(x^{\prime}, y^{\prime}\right)$; otherwise, output \perp.

Hint: imagine the input z is sampled from the product of natural numbers $<2^{n}$ (not necessarily primes), and then calculate the conditional probability when z happens to be a product of two primes.

Problem 5 (4pts). Suppose that $f:\left\{\{0,1\}^{n} \rightarrow\{0,1\}^{l(n)}\right\}_{n \in \mathbb{N}}$ is a OWF. This problem will step-by-step prove that $g:\left\{\{0,1\}^{n} \rightarrow\{0,1\}^{2 l(n)}\right\}_{n \in \mathbb{N}}$ constructed below is also a OWF. The construction of g is:

$$
g(x):=f(x) \| f(x)
$$

where || the concatenation of strings.
(a) Argue that g is an easy-to-compute function.
(b) Write the statement of "assume for contradiction, g is easy to invert" that is formally quantified by probability; in this statement, denote A as the adversarial algorithm.
(c) Write an algorithm $B\left(1^{n}, z\right)$ such that (i) B takes as input z sampled by $x \leftarrow\{0,1\}^{n}, z \leftarrow$ $f(x)$, and then (ii) B runs A as a subroutine. Moreover, argue that B is NUPPT.
(d) Argue that B from the previous step inverts f with non-negligible probability, that is, there exists a polynomial $q(n)$ such that for infinitely many $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}, z \leftarrow f(x): f\left(B\left(1^{n}, z\right)\right)=z\right] \geq 1 / q(n),
$$

which contradicts that f is a OWF and completes this reduction.
Problem 6 (2pts). Suppose that $g:\left\{\{0,1\}^{n} \rightarrow\{0,1\}^{l(n)}\right\}_{n \in \mathbb{N}}$ is a OWF. This problem will step-bystep disprove that $h:\left\{\{0,1\}^{n} \rightarrow\{0,1\}^{\lfloor l(n) / 2\rfloor}\right\}_{n \in \mathbb{N}}$ constructed below is a OWF. The construction of h is:

$$
h(x):=g(x)[1, \ldots,\lfloor l / 2\rfloor] \oplus g(x)[\lfloor l / 2\rfloor+1, \ldots, 2\lfloor l / 2\rfloor\rfloor,
$$

where \oplus denotes bitwise XOR, $s[i, \ldots, j]$ denotes the substring $\left(s_{i}, s_{i+1}, \ldots, s_{j}\right)$ of string s, and $l:=l(|x|)$, where $|x|$ denotes the bit-length of x.
It suffices to find a OWF g such that h is easy to invert when the above construction uses g.
(a) Find g so that g is a OWF but $h(x)=0^{\lfloor l(|x|) / 2\rfloor}$ for such g.
(b) Write an NUPPT adversary A such that $A\left(1^{n}, z\right)$ inverts $z \leftarrow h(x), x \leftarrow\{0,1\}^{n}$ with probability 1 .

Problem 7 (8pts). Let $f_{1}, f_{2}:\left\{\{0,1\}^{n} \rightarrow\{0,1\}^{n}\right\}_{n \in \mathbb{N}}$ be one-way functions. Prove or disprove each of the following function g is a OWF (there are 4 subproblems).
(a) $g(x):=f_{1}(x) \oplus\left(000 \| 1^{|x|-3}\right)$
(b) $g(x):=f_{1}(x) \oplus f_{2}(x)$
(c) $g(x):=f_{1}(x)[1, \ldots,\lfloor|x| / 2\rfloor]$
(d) $g(x):=f_{1}\left(f_{2}(x)\right)$

