
CS 6222, Homework 2 Due: Sep 27, 2023, 11:59 pm EDT

CS 6222, Homework 2
Instructor: Wei-Kai Lin

Total points: 30. Points are noted after each problem.

Problem 1 (6pts). This problem will prove the Chebyshev’s bound on π(n), that is, for all n > 1,

π(n) ≥ n

2 log n
, (1)

where log is base 2.

(a) For any n > 1, n ∈ N, let N :=
(
2n
n

)
. Show that N > 2n.

(b) For any m ∈ N, consider the prime factorization of the factorial m!, which can be written as

m! =
∏

p prime

pνp(m!),

where νp(x) ∈ N denotes the maximal power of p such that pνp(x) divides x. Show that for
any p, it holds that νp(m!) =

∑
j=1,2,...

⌊
m/pj

⌋
.

(c) Take log on both sides of (a), and then show that∑
p prime

(νp((2n)!)− 2νp(n!)) · log p =
∑

prime p<2n

(νp((2n)!)− 2νp(n!)) · log p > n (2)

(d) Show that for any prime p, any n > 1,

νp((2n)!)− 2νp(n!) ≤ logp(2n) =
log(2n)

log p
.

(e) Plug (d) into equation (2) and then show that π(2n) · log(2n) > n, and thus Equation (1)
holds for all even n.

(f) Show Equation (1) holds for all odd n > 1.

Problem 2 (3pts). Let G be a finite group with the binary operator ⊗. Let H ⊆ G be a subset
of G. Suppose that

• Identity: 1 ∈ H (where 1 is the identity of G), and

• Closure: for all a, b ∈ H, it holds that a⊗ b ∈ H.

Prove that H is a subgroup of G (by proving associativity and inverse for ⊗).

Problem 3 (2pts). We say N ∈ N is a perfect power if N = mk for some m, k ∈ N,m > 1.
Consider any input N < 2n that is represented by an n-bit string. Show that perfect power can
be decided in time polynomial in n through following steps. Notice that, we can only perform
constant-bit computation in unit time, and thus the addition, multiplication, or exponentiation of
n-bit integers take time O(n), O(n2), O(n3) respectively.

(a) Show that if N = mk, then k < n.

1 of 3

CS 6222, Homework 2 Due: Sep 27, 2023, 11:59 pm EDT

(b) Since there are only O(n) possible k’s, it suffices to decide if there exists integer m such that
mk = N . Write an algorithm to do that in time O(n4). Hint: binary search or Newton’s
method.

Problem 4 (5pts). Recall that assuming factoring is hard, then the following function fmul : N2 →
N

fmul(x, y) =

{
1 if x = 1 or y = 1

x · y o.w.

is a weak OWF. Show that efficient prime testing is not needed in the proof. Specifically, assume
for contradiction, fmul is not a weak OWF; that is, for any polynomial q(n), there exists an NUPPT
adversary A such that for infinitely many n ∈ N,

Pr[x, y ← {0, 1}n, z ← x · y : fmul(A(1n, z)) = z] > 1− 1

q(n)
.

Then, show the following NUPPT B takes as input a product z of two primes and then outputs a
prime factor with non-negligible probability.

Algorithm B(1n, z):

1. Run (x′, y′)← A(1n, z).

2. If x′ ̸= 1 and y′ ̸= 1 and x′ · y′ = z, output (x′, y′); otherwise, output ⊥.

Hint: imagine the input z is sampled from the product of natural numbers < 2n (not necessarily
primes), and then calculate the conditional probability when z happens to be a product of two
primes.

Problem 5 (4pts). Suppose that f : {{0, 1}n → {0, 1}l(n)}n∈N is a OWF. This problem will step-
by-step prove that g : {{0, 1}n → {0, 1}2l(n)}n∈N constructed below is also a OWF. The construction
of g is:

g(x) := f(x)∥f(x),

where ∥ the concatenation of strings.

(a) Argue that g is an easy-to-compute function.

(b) Write the statement of “assume for contradiction, g is easy to invert” that is formally quan-
tified by probability; in this statement, denote A as the adversarial algorithm.

(c) Write an algorithm B(1n, z) such that (i) B takes as input z sampled by x ← {0, 1}n, z ←
f(x), and then (ii) B runs A as a subroutine. Moreover, argue that B is NUPPT.

(d) Argue that B from the previous step inverts f with non-negligible probability, that is, there
exists a polynomial q(n) such that for infinitely many n ∈ N,

Pr[x← {0, 1}n, z ← f(x) : f(B(1n, z)) = z] ≥ 1/q(n),

which contradicts that f is a OWF and completes this reduction.

Problem 6 (2pts). Suppose that g : {{0, 1}n → {0, 1}l(n)}n∈N is a OWF. This problem will step-by-
step disprove that h : {{0, 1}n → {0, 1}⌊l(n)/2⌋}n∈N constructed below is a OWF. The construction
of h is:

h(x) := g(x)[1, ..., ⌊l/2⌋]⊕ g(x)[⌊l/2⌋+ 1, ..., 2⌊l/2⌋],

2 of 3

CS 6222, Homework 2 Due: Sep 27, 2023, 11:59 pm EDT

where ⊕ denotes bitwise XOR, s[i, ..., j] denotes the substring (si, si+1, ..., sj) of string s, and
l := l(|x|), where |x| denotes the bit-length of x.

It suffices to find a OWF g such that h is easy to invert when the above construction uses g.

(a) Find g so that g is a OWF but h(x) = 0⌊l(|x|)/2⌋ for such g.

(b) Write an NUPPT adversary A such that A(1n, z) inverts z ← h(x), x← {0, 1}n with proba-
bility 1.

Problem 7 (8pts). Let f1, f2 : {{0, 1}n → {0, 1}n}n∈N be one-way functions. Prove or disprove
each of the following function g is a OWF (there are 4 subproblems).

(a) g(x) := f1(x)⊕ (000∥1|x|−3)

(b) g(x) := f1(x)⊕ f2(x)

(c) g(x) := f1(x)[1, ..., ⌊|x|/2⌋]

(d) g(x) := f1(f2(x))

3 of 3

