CS 6222, Homework 4

Instructor: Wei-Kai Lin

Total points: 30. Points are noted after each problem.
Problem 1 (2pt each). Let f be a pseudorandom function. Show that each of the following MACs is insecure. (In each case Gen outputs a uniform $k \leftarrow\{0,1\}^{n}$; we let $\langle i\rangle$ denote an $n / 2$-bit encoding of the integer i.)
(a) To authenticate a message $m=m_{1}, \ldots, m_{\ell}$, where $m_{i} \in\{0,1\}^{n}$, compute $t:=f_{k}\left(m_{1}\right) \oplus \cdots \oplus$ $f_{k}\left(m_{\ell}\right)$.
(b) To authenticate a message $m=m_{1}, \ldots, m_{\ell}$, where $m_{i} \in\{0,1\}^{n / 2}$, compute $t:=f_{k}\left(\langle 1\rangle \| m_{1}\right) \oplus$ $\cdots \oplus f_{k}\left(\langle\ell\rangle \| m_{\ell}\right)$.
(c) To authenticate a message $m=m_{1}, \ldots, m_{\ell}$, where $m_{i} \in\{0,1\}^{n / 2}$, choose uniform $r \leftarrow\{0,1\}^{n}$, compute $t:=f_{k}(r) \oplus f_{k}\left(\langle 1\rangle \| m_{1}\right) \oplus \cdots \oplus f_{k}\left(\langle\ell\rangle \| m_{\ell}\right)$, and let the tag be (r, t).
[KL, Exercise 4.6]
Problem 2 (4pt). Can the following problem be solved in polynomial time? Given a prime p, an integer $e \in Z_{p-1}^{*}$, and $y:=g^{e} \bmod p$ where g is a uniform value in Z_{p}^{*}, find g; that is, compute $y^{1 / e} \bmod p$. If your answer is "yes," give a polynomial-time algorithm. If your answer is "no," show a reduction to one of the assumptions introduced in [KL, Chapter 9]. [KL, Exercise 9.21]

Problem 3 (3pt each). Consider the following construction (a generalization of the collisionresistant hash function discussed in class and in [KL, Construction 9.78]).

Construction. Define a hash function (Gen, H) parameterized by an integer $t \in \mathbb{N}$ as follows:

- Gen: on input 1^{n}, run the cyclic group sampling to obtain ($G, q, g, h_{2}, \ldots, h_{t}$) where q is n-bit prime, the order of G is q, g is a generator of G, and h_{i} is sampled uniformly at random from G for all $i=2, \ldots, t$. Output $s:=\left(G, q, g, h_{2}, \ldots, h_{t}\right)$ as the key.
- H : given a key $s=\left(G, q, g, h_{2}, \ldots, h_{t}\right)$ and input $\left(x_{1}, \ldots, x_{t}\right)$ with $x_{i} \in Z_{q}$, output

$$
H_{s}\left(x_{1}, \ldots, x_{t}\right):=g^{x_{1}} \prod_{i=2}^{t} h_{i}^{x_{i}} .
$$

(a) Prove that if the discrete-logarithm problem is hard relative to G and q is prime, then for any t that is a polynomial of n, this construction is a collision-resistant hash function.
(b) Notice that the output of H is an element of G, but the number of bits needed to represent an element can be longer than n (even q is n-bit). Discuss how this construction can be used to obtain compression regardless of the number of bits needed to represent elements of G (as long as it is polynomial in n).
[KL, Exercise 9.28]
Problem 4 (4pt). Read Section 6.2, "The Merkle-Damgård Transform," of [KL] and answer the following.

Generalize the Merkle-Damgård transform to the case where (Gen, h) takes inputs of length $n+1$ and generates outputs of length n. (The hash function you construct should accept inputs of any
length $L<2^{n}$.) Prove that your transform yields a collision-resistant hash function for arbitrarylength inputs if (Gen, h) is collision resistant. [KL, Exercise 6.5]
Problem $5(4 \mathrm{pt})$. Given a computable function Com, some polynomial $l(\cdot)$, the definition of perfect binding and hiding are

1. Perfect binding: For all $n \in \mathbb{N}$ and all $v_{0}, v_{1} \in\{0,1\}^{n}$ such that $v_{0} \neq v_{1}, r_{0}, r_{1} \in\{0,1\}^{l(n)}$, it holds that $\operatorname{Com}\left(v_{0}, r_{0}\right) \neq \operatorname{Com}\left(v_{1}, r_{1}\right)$.
2. Perfect hiding: For all unbounded distinguisher D, for all $n \in \mathbb{N}, v_{0}, v_{1} \in\{0,1\}^{n}$,

$$
\operatorname{Pr}\left[r \leftarrow\{0,1\}^{l(n)}: D\left(\operatorname{Com}\left(v_{0}, r\right)\right)=1\right]=\operatorname{Pr}\left[r \leftarrow\{0,1\}^{l(n)}: D\left(\operatorname{Com}\left(v_{1}, r\right)\right)=1\right]
$$

Prove that there do not exist a commitment scheme Com that satisfies both perfect binding and perfect hiding.

Problem 6 (3pt each). The zero-knowledge proof (ZKP) of Graph 3-Coloring and thus ZKP for any language in NP can be abstracted as follows. Let L be a language in class NP, and let $x \in L$ and w is a witness of x. The ZKP protocol (P, V) proceed as below.

1. $P(x, w)$ computes (state, m_{1}) and then sends message m_{1} to V.
2. $V(x)$ samples message m_{2} uniformly at random and then sends m_{2} to P without the need to look at m_{1}.
3. $P(x, w)$ uses (state, m_{2}) and then computes and sends m_{3} to V.
(Afterward, V checks the consistency of (x, m_{1}, m_{2}, m_{3}) and then Accepts or Rejects.)
This is known as "sigma protocol," and it is useful to observe that m_{2} is uniform and independent of m_{1}. The communication cost of the protocol is the total message length, denoted as $C(P, V):=$ $\left|m_{1}\right|+\left|m_{2}\right|+\left|m_{3}\right|$.
Using the abstraction, consider the composition of two ZKP of two NP languages L_{a}, L_{b}. Suppose that $\left(P_{a}, V_{a}\right)$ is a ZKP of L_{a} and $\left(P_{b}, V_{b}\right)$ is a ZKP of L_{b}.
(a) Construct a ZKP protocol such that a prover can efficiently convince a verifier that " $x_{a} \in L_{a}$ AND $x_{b} \in L_{b} "$
when the prover is given the two witnesses w_{a} of x_{a} and w_{b} of x_{b}. Show that the communication cost is $C\left(P_{a}, V_{a}\right)+C\left(P_{b}, V_{b}\right)$. Prove the completeness, soundness, and zero-knowledge.
(b) Construct a ZKP protocol such that a prover can efficiently convince a verifier that

$$
" x_{a} \in L_{a} \text { OR } x_{b} \in L_{b} "
$$

when the prover is given only either w_{a} or w_{b}. Show that the communication cost is $C\left(P_{a}, V_{a}\right)+C\left(P_{b}, V_{b}\right)$. Prove the completeness, soundness, and zero-knowledge. Specifically by zero-knowledge, the verifier shall not learn which of $\left(x_{a}, x_{b}\right)$ is in the corresponding language. Hint: assume that both protocols $\left(P_{a}, V_{a}\right)$ and $\left(P_{b}, V_{b}\right)$ send their m_{2} 's of the same length, and then consider that the verifier sends only one m_{2} so that the prover is allowed to respond arbitrarily on one of the two instances; since m_{2} is uniform and independent in both protocols, the completeness and soundness are almost direct, but ZK is challenging.

