\bullet CS6222 Cryptography \bullet

Topic: Hybrids and PRGs Date: Sep 5, 2024 Lecturer: Wei-Kai Lin (TA: Arup Sarker) Scriber: Mikhail Kornilov, Yanchen Liu

1 Hybrid Lemma

The hybrid lemma is a statement of continuity among distributions.

Theorem 1 (Hybrid Lemma). Suppose there is a sequence of distributions $X_1, X_2, X_3, \ldots X_{n-1}, X_m$ and an algorithm A that distinguishes X_1 from X_m with probability p, meaning $\Pr_{x \leftarrow X_1} \{A(x) =$ 1 } – $Pr_{x \leftarrow X_m}$ { $A(x) = 1$ } | $\lt p$. Then for some $1 \leq i \leq m-1$ there exists an algorithm that distinguishes X_i from X_{i+1} with probability at least $\frac{p}{m-1}$.

Proof (by contradiction). Define $p_i = Pr_{x \leftarrow X_i} \{A(x) = 1\}$. Suppose for each $1 \le i \le m-1$, we have $|p_i - p_{i+1}| < \frac{p}{m-1}$ $\frac{p}{m-1}$. Then, adding together distances from 1 all the way to m, we have

$$
|p_i - p_{i+1}| \ge \frac{p}{m-1}
$$

$$
|p_1 - p_2| + |p_2 - p_3| + \dots + |p_{m-1} - p_m| < (m-1) \cdot \frac{p}{m-1}
$$

$$
|p_1 - p_2| + |p_2 - p_3| + \dots + |p_{m-1} - p_m| < p
$$

Using triangle inequality,

$$
|p_1 - p_m| \le |p_1 - p_2| + |p_2 - p_3| + \dots + |p_{m-1} - p_m| < p
$$

However, by premise, we have $|p_1 - p_m| \geq p$

$$
p \le |p_1 - p_m| < p
$$

This is a contradiction.

Corollary 2. If $X \approx_c Y$ and $Y \approx_c Z$, then $X \approx_c Z$

The Prediction Lemma gives an alternative definition for computational indistinguishability. The idea is, you have any algorithm \tilde{A} which distinguishes between two ensembles. If the algorithm's accuracy can't be non-negligibly better than $\frac{1}{2}$, the ensembles are computationally indistinguishable.

Theorem 3 (Prediction Lemma). Two ensembles $\mathcal{X}^{(0)}$ and $\mathcal{X}^{(1)}$ are computationally indistinguishable iff for every NUPPT algorithm A, there exists a negligible $\varepsilon(\cdot)$ s.t. for each $n \in \mathbb{N}$,

$$
\Pr_{b \leftarrow U\{0,1\}}[A(1^n, t) = b | t \leftarrow X_n^{(b)}] < \frac{1}{2} + \varepsilon(n)
$$

 \Box

2 PRGs

We improve on the one-time pad by using a shorter key length. Instead of encoding $m \oplus k_1$ where k_1 is long, we encode $m \oplus g(k_2)$, where k_2 is short, but the function g turns it into a random string. PRGs (pseudo-random generators) are functions g such that

- 1. q is a function (1 input to only 1 output)
- 2. g takes in a binary string and returns another binary string $g: \{0,1\}^* \to \{0,1\}^*$
- 3. g is efficiently computable (polynomial time) and deterministic
- 4. g's output is longer than the input $|g(x)| > |x|$ for all $x \in \{0,1\}^*$
- 5. pseudo-randomness: $\{g(x)|x \leftarrow U\{0,1\}^n\} \approx_c \{U\{0,1\}^{n+1}\}\$

The last condition states that if q constructs a $n + 1$ -bit uniform random binary string, the output should be computationally indistinguishable from a uniform random $(n+1)$ -bit binary string. This defines a single-bit expansion PRG.

Example

Polynomial: $x_{i+1} = (a \times x_i + b) \mod p$ is not A **PRG**. As we can predict the value of next state based on the value of current state. And we can't distinguish this with true random with non-negligible probability through frequency analysis.

Lemma 4. If there exists an **PRG**, it holds that $NP \neq P$. (Shows great impact to those cryptographic objects, e.g. secure encryption where length of key is less than length of text $|K| < |M|$)

Proof. We want to find a set L, where $L \in N_p$, but $L \notin P$. And the

$$
L := \{all \ strings \ outputted \ by \ PRG\} = \{g(x) : x \in \{0, 1\}^*\}
$$

If function g is a PRG, $L \in NP$ by for $\forall y \in L$, there $\exists x \, s.t. \, g(x) = y$ is the witness $\rightarrow L \in NP$ Assume for contradiction, if language $L \in P : \exists A \ s.t. \ A(y) = (if \ y \in L)$ where A is polynomial time computable, and could determine whether given y is in L . We use A as a distinguisher. Then we have $Pr_{t \in L_n}[A[t] = 1] = 1$ and $Pr_{t \in U\{0,1\}^{n+1}}[A[t] = 1] < \frac{1}{2}$ $\frac{1}{2}$, which shows that the language L is not computational distinguishable, thus it holds that q is not PRG. \Box