
; CS6222 Cryptography <

Topic: PRGs Date: Sep 10, 2024

Lecturer: Wei-Kai Lin (TA: Arup Sarker) Scriber: Adarsha Poudel

1 Pseudorandom Generators (PRGs)

PRGs are foundational in cryptography, as they are used to construct various cryptographic prim-
itives such as pseudorandom functions (PRFs) and symmetric key encryption schemes. The ex-
panding property ensures that the generator can produce more pseudorandom bits than the input,
which is crucial for many cryptographic applications.

Additionally, PRGs enhance the efficiency of the one-time pad by reducing the required key length.
In a traditional one-time pad, the key must be as long as the message, but with a PRG, a shorter
seed (key) can be expanded to the necessary length, making it feasible to use a key that is a fraction
of the input length, significantly improving practical usability.

1.1 Definition of PRG

A function g : {0, 1}∗ → {0, 1}∗ is a Pseudorandom Generator (PRG) if it satisfies the following
properties:

• Efficiently Computable: The function g is efficiently computable, meaning it can be com-
puted in polynomial time relative to the size of its input.

• Expanding: The PRG expands its input, i.e., for every input x ∈ {0, 1}∗, the length of the
output is strictly greater than the length of the input:

|g(x)| = l(n) > |x|

where l(n) denotes the length of the output, and n = |x|.

• Pseudorandom: The output g(x) is pseudorandom, meaning it is computationally indistin-
guishable from a truly random string of the same length. Formally, for every probabilistic
polynomial-time algorithm A, the probability that A distinguishes g(x) from a uniform ran-
dom string of length l(n) is negligible:∣∣Pr[A(g(x)) = 1]− Pr[A(Ul(n)) = 1]

∣∣ < ϵ(n)

where Ul(n) denotes the uniform distribution over strings of length l(n), and ϵ(n) = 1
p(n) is a

negligible function for some polynomial p(n).

1.2 Theorem: PRG Expansion

Theorem: Suppose g is a PRG such that |g(x)| = |x|+ 1. Then, there exists a PRG G such that
|G(x)| = 2|x|.

1 of 5

1.2.1 G(x) generation

The idea behind the construction of G from g(x) is as follows:

Given an initial seed s of length n, the generator g can be used to obtain n+1 pseudorandom bits.
One of the n+1 bits may be output, and the remaining n bits can be used once again as a seed for
g. The reason these n bits can be reused as a seed is that they are pseudorandom. This process
can be repeated 2n times to achieve the desired length.

Figure 1: Construction of G(x) by applying g 2n times to achieve the desired expansion.

1.2.2 Security Proof Using Hybrid Lemma

Step 1: Assumption for Contradiction Assume, for contradiction, that G is not a pseu-
dorandom generator. This implies that there exists a non-uniform probabilistic polynomial-time
(NUPPT) adversary A and a polynomial p(n) such that for n ∈ N, A can distinguish the output
of G(x) from a uniform distribution U2n with probability greater than 1

p(n) . Formally, we have:

|Pr[A(G(x)) = 1]− Pr[A(U2n) = 1]| > 1

p(n)
.

This inequality indicates that A can distinguish between the pseudorandom output of G and a
truly random string of length 2n with a non-negligible advantage.

Step 2: Construction of Adversary B To leverage the distinguishing capability of A, we
construct a new adversary B that uses A to challenge the pseudorandomness of g.

• Objective of B: Adversary B aims to distinguish the output of g from a truly random
string, thus testing g’s pseudorandomness.

2 of 5

• Operation of B:

1. B receives an input t ∈ {0, 1}n+1, which is either generated by g(x) for some x ∈ {0, 1}n
or is uniformly random.

2. B simulates a sequence that resembles the hybrids Hi (defined below) by embedding t
into specific positions corresponding to the hybrids.

3. B then runs A on this crafted input, effectively “hardwiring” the bits of t into the
sequence in a manner that matches Hi.

Step 3: Hybrid Distributions We define a sequence of hybrid distributions H0, H1, . . . ,H2n

to facilitate the application of the Hybrid Lemma:

• H0: Represents the fully random distribution U2n.

• H2n: Corresponds to the distribution of the output of G(x).

• Intermediate Hybrids Hi:

– Each Hi is constructed such that the first i bits are truly random, while the remaining
2n− i bits are produced by iteratively applying g, as in the construction of G.

Step 4: Proving Indistinguishability of Consecutive Hybrids Hi ≈ Hi+1

1. Indistinguishability Argument:

• For each pair (Hi, Hi+1), the only difference lies in the replacement of one bit: Hi has
the i-th bit as pseudorandom, while in Hi+1, this bit is replaced by a truly random bit.

• The goal is to demonstrate that no efficient adversary can distinguish between Hi and
Hi+1.

2. Using Adversary B:

• Construct adversary B so that it can distinguish whether a given input t is more con-
sistent with the pseudorandom or random nature of the hybrids.

• B utilizes A by preparing inputs that simulate Hi and Hi+1 and feeds these to A.

• If A successfully distinguishes between these hybrids, then B exploits this to distinguish
the output of g from truly random, violating g’s pseudorandomness assumption.

3. Formal Indistinguishability Proof :

• For any efficient distinguisher D:

|Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1]| ≤ ϵ(n),

where ϵ(n) is negligible.

• Summing these negligible differences across all 2n hybrids results in a cumulative differ-
ence of 2n · ϵ(n), which remains negligible.

3 of 5

Step 5: Applying the Hybrid Lemma Applying the Hybrid Lemma, we conclude:

H0 ≈ H1 ≈ . . . ≈ H2n.

Thus, H0, which is fully random, is indistinguishable from H2n, the output distribution of G(x).
Therefore, G(x) is indistinguishable from a truly random string.

Step 6: Reduction Using B and Concluding the Contradiction

1. Reduction to g’s Indistinguishability:

• To directly challenge g’s pseudorandomness, we construct B to leverage A’s distinguish-
ing power. Specifically, B is designed to take an input t ∈ {0, 1}n+1 (either from g(x)
or uniformly random) and simulate inputs for A that reflect the intermediate hybrid
distributions Hi.

• Mathematically, B operates as follows:

Given t ∈ {0, 1}n+1, B constructs an input x̃ for A such that:

- If t = g(x) for some x ∈ {0, 1}n, then x̃ is structured to resemble a hybrid distribution
close to Hj . - If t is uniformly random, x̃ mimics the structure of Hj+1.

• The reduction uses the property:

|Pr[A(Hj) = 1]− Pr[A(Hj+1) = 1]| ≥ 1

p(n)
.

If A can distinguish G(x), then the above expression implies that B can distinguish
between g(x) and a random string of the same length, directly challenging the assumption
that g is a PRG.

• Formal Reduction Analysis:

– Suppose t = g(x). Then:

Pr[B(t) = 1] = Pr[A(Hj) = 1].

– If t is uniformly random:

Pr[B(t) = 1] = Pr[A(Hj+1) = 1].

– Hence:

|Pr[B(g(x)) = 1]− Pr[B(Un+1) = 1]| = |Pr[A(Hj) = 1]− Pr[A(Hj+1) = 1]| > 1

p(n)
.

– This inequality indicates thatB distinguishes g(x) from random with a non-negligible
advantage, contradicting the definition of g being a PRG.

4 of 5

2. Final Contradiction:

• Since B successfully distinguishes g(x) from a uniformly random string with a probability
greater than 1

p(n) , we conclude that g cannot be pseudorandom.

• This directly contradicts our initial assumption that g is a PRG, which implies that the
only consistent conclusion is that the assumption of G not being pseudorandom is false.

• Therefore, G must indeed be a pseudorandom generator, as any adversary’s success in
distinguishing it from uniform would imply a breach in g’s pseudorandomness, which is
not the case.

5 of 5

	Pseudorandom Generators (PRGs)
	Definition of PRG
	Theorem: PRG Expansion
	G(x) generation
	Security Proof Using Hybrid Lemma

