
; CS6222 Cryptography <

Topic: Introduction Date: Sep 12, 2024

Lecturer: Wei-Kai Lin (TA: Arup Sarker) Scriber: Shiyu Li, Han Yang

1 Pseudorandom Functions

We begin with the definition of random functions.

1.1 Random functions

Definition 1 (Random Functions). A random function f : {0, 1}n → {0, 1}n is a random variable
sampled uniformly from the set RFn := {f : {0, 1}n → {0, 1}n}.

The terminology could be confusing. Like we just said, a mathematical function should be some-
thing deterministic. It is an object that always maps the same input to the same output. How can
it be random in any sense? When we talk about random functions, it is a set of functions. Here, we
just define the set RF to be the set of all functions that maps from n bits to n bits. Every function
is an object, and we can have a set of objects and call it another set. We can sample an object
from this set.

That is the definition of random function. It is mathematically a function, but we sampled the
uniformly random from a set of functions. It is random in the sense that we don’t know exactly
what the sampling process will give us. The point is, if we have a random function sampled, it still
maps the same input to the same output.

View random function in two views. Combinatorial view. RF is parameterize by some finite
integer n, we can indeed count how many objects we have in this set. For every function f that
the maps from n bits to n bits, we can view this function as a truth table (Table 1). For every
f that the maps from n bits to n, we can write down with two tables. The first row of the input
column will be a string with n zeros, and that of the output column is another n-bit string. We do
not know exactly what the value is, but it is an n-bit string.

Input Output

0000...00 f(0000...00)
0000...01 f(0000...01)

... ...
1111...11 f(1111...11)

Table 1: View f as a truth table.

n it is a finite integer, so we have 2n distinct inputs. For every row here, there is a n-bit output,
and each output has 2n options. We can then count the number of functions in the set RF, which
is 2n·2

n
.

Computational view. A random function f is a data structure that on any input x, perform the
following:

1 of 4

• initialize a map m to empty before any query

• if x /∈ m, then sample y ← {0, 1}n and set m[x]← y

• output m[x]

We can use some shorter description to emulate a random function. First think a little bit back
in the example of encryption. Suppose Alice and Bob share a random function. That means,
Alice and Bob share a huge truth table. With this random function shared the in advance as their
secret key, Alice and bob can indeed encrypt the many messages using this random function. For
example, Alice can encrypt some message m by calling this random function f on some sequential
number r0 and sending (r0, f(r0)⊕m). Then Bob can call f on r0 and further recover the message.
They can use this random function to encrypt many messages. But it is super efficient to share
this random function in advance. We want to replace this random function with something that
makes encryption more efficient. That is the purpose of considering random functions as well as
their alternatives.

1.2 Oracle indistinguishability

When I say replacing this random function with something else that makes encryption more efficient,
I am talking about the computational indistinguishability. But now it is oracle indistinguishability.
Oracle is a fancy name for functions, and random functions are also called random oracles. When
we say oracle, we want to stress the property of functions that you can only query on some inputs
and get the outputs, but you do not know how the function is computed.

Oracle in real world is typically a human that knows the future. The person can answer your
questions, but the person will not show you anything else.

Definition 2 (Oracle Indistinguishability). Let {O0
n}n∈N and {O1

n}n∈N be ensembles where O0
n,O1

n

are probability distributions over functions. We say that {O0
n}n and {O1

n}n are computationally
indistinguishable if for all NuPPT machines D that is given oracle accesses to a function, there
exists a negligible function ϵ(·) such that for all n ∈ N,

Pr[F ← O0 : DF (·)(1n) = 1]− Pr[F ← O1 : DF (·)(1n) = 1] ≤ ϵ(n).

Purpose of defining oracle queries. Each distribution is a distribution over functions, and the
description of each function can be really long. When the adversary takes a very long input, it is
hard to find the running time of the adversary. That is one reason we define oracle queries (e.g.,
DF (·)). Another reason is that when we put a function on the superscript of an algorithm, that
means the algorithm can query this function using inputs and get the outputs, but it doesn’t know
anything beyond these.

Purpose of taking 1n as an input. It is necessary to say D is a polynomial-time algorithm. Other-
wise, it has no input, then how do we say polynomial time in precise? 1n tells D the problem size
is n.

Discuss. For any NuPPT M , is M(f(·)← O0
n) indistinguishable from M(f(·)← O1

n)?

It is easy to verify that oracle indistinguishability satisfies “closure under efficient operations” using
the Hybrid Lemma and the Prediction Lemma.

2 of 4

1.3 Pseudo-random Functions(PRFs)

The purpose of pseudo-random functions is an efficient computable set of functions that we can
emulate the functions.

Definition 3 (Pseudo-random Functions). A family of functions {fs : {0, 1}n → {0, 1}n, n =
|s|}, s ∈ {0, 1}∗ is pseudo-random if:

• (Easy to compute): fs(x) can be computed by a PPT algo that is given input s,x.

• (Pseudo-random): {s← {0, 1}n : fs}n ≈ {F ← RFn : F}n

For the second condition, on the right hand side, it is an ensemble of distributions on functions.
For every n, I have one distribution RF and I am sampling from this distribution or set RF to
the function F . On the left hand side, I am also talking about functions. I first pick a uniform
seed of n-bit string, and then using this n-bit string to choose a function of fs. For every n, we
are comparing the distribution of functions to distribution of functions. We require that there is
no efficient algorithm to distinguish these two distribution of functions.

Discuss.

• Does PRF exist?

The existence of PRF implies the existence of PRG, and the existence of PRG implies P ̸=
NP , so we don’t know.

• Suppose g is a PRG, is g a PRF?

No, the syntax does not match.

• Can we construct a PRF fs(x) as fs(x) := g(s)[x+ 1, ..., x+ n], where g is a PRG?

No. First, it may take a long time to compute. For example, when |x| = n, the maximum
value of x is 2n− 1, we have to compute g(s)[2n, ..., 2n+n]. Moreover, we do not know if this
is strictly pseudo-random any more.

• Why a PRF must be a keyed function?

Because we want to pick a function randomly, we cannot use a fixed function, otherwise the
adversary will know the response from the function.

• The AES encryption is a deterministic algorithm Enc(k,m) that takes a 256-bit key k and an
arbitrary-length message m. (We omit the initial vector and the block modes and just use
the default.) Is Enc a PRF?

It is not a well defined PRF. Reasons: 1) Key length is fixed in AES. 2) AES’s key length is
shorter.

1.4 Chosen-Plaintext-Attack secure (CPA)

Previously, when we discussed about the security encryption schemes, we mostly only consider the
encryption of one single message. Now we are moving on to define a secure encryption for many
messages.

Assuming there is an adversary who can send a plaintext to me and get the ciphertext. The
adversary can repeat the process many times. But there is one message the adversary does not

3 of 4

Adversary User

𝑚

𝑐

𝑚!, 𝑚"

𝑐#

𝑚

𝑐

𝑏 ∈ {0, 1}

Figure 1: CPA Experiment.

know. In particular, the adversary chooses two messages m0 and m1. I am encrypting one of the
two messages, so I choose a random bit b uniformly. My only secret is the b, and all the adversary
wants to know is the secret b. I encrypt mb using my key which is sampled in advance and send
this ciphertext to the adversary. The adversary needs to guess the bit b, and the winning condition
to the adversary is guessing b correctly.

Definition 4 (Chose-Plaintext-Attack Encryption (CPA)). Let Π = (Gen,Enc,Dec) be an en-
cryption scheme. For any NuPPT adversary A, for any n ∈ N, b ∈ {0, 1}, define the experiment
ExprΠ,A

b (1n) to be:

Experiment ExprΠ,A
b (1n):

1. k ← Gen(1n)

2. (m0,m1, state)← AEnck(·)(1n)

3. c← Enck(mb)

4. Output AEnck(·)(c, state)

Then we say Π is CPA secure if for all NuPPT A,

{
ExprΠ,A

0 (1n)
}
n
≈

{
ExprΠ,A

1 (1n)
}
n
.

4 of 4

	Pseudorandom Functions
	Random functions
	Oracle indistinguishability
	Pseudo-random Functions(PRFs)
	Chosen-Plaintext-Attack secure (CPA)

