Writeup for Thursday, Sept 19

Sadhika Dhanasekar, Dhriti Gampa

September 19, 2024

1 Indistinguishable Rooms

Function f is a psuedorandom function if there's an adversary (A) who cannot distinguish the room they are talking to given the other Room (R) generates random numbers. B (from below in the Theorem) can also emulate R. A can only give an input to both rooms and get an output from one of the function.

> $f_k()$ where $k \leftarrow \{0, 1\}^n$ $R: \{0,1\}^n \to \{0,1\}^n, R \leftarrow RF_n$ $PRF \Rightarrow CPA$ -secure encryption

PRG: func g: $g(s)$, $s \leftarrow \{0,1\}^n$ is a random input, U_{2n} is a uniform, 2n-bit random string, and SS_c is a long string generated if $g(s)$ is applied repeatedly. Therefore, SS_c must be indistinguishable from U_{2n}

2 Theorem: (Goldreich, Goldwaser, Micali, 1984)

 $\exists PRG \Rightarrow \exists PRF$

Construct: Suppose $g: \{0,1\}^n \to \{0,1\}^{2n}$ for all n is PRG. Binary tree output: $[k \leftarrow 0, 1^n] \rightarrow [[g][...] \rightarrow [[g][...]$ and arrow to $[[g][...]$ and so on for $2ⁿ$ strings given n depth. The root node of the binary tree is the initial random string s and each child of the root determined by applying the function g to it's parent node: g(the parent node)

 $f_k(x) :=$ value of x^{th} leaf and can be found in $O(n)$ since you follow a single path from the root

Def: $q_0(z) = q(z)[1...n]$ $g_1(z) = g(z)[n + 1...2n]$ $f_k(x = x_1 x_2 ... x_n) := g_{x_n} * g_{x_{n-1}} * g_{x_{n-2}} ... * g_x(k)$

Now we must prove this function, f, is part of the PRF family by showing that it is efficiently computable in polynomial time and is secure.

Step 1: f is efficiently computable in polynomial time n because g is computable in polynomial

time n.

Step 2: Assume for contradiction, \exists NUPPT A, poly p, such that for infinitely many $n \in \mathbb{N}$,

$$
\Pr[A^{f_k(\cdot)}(1^n) = 1] - \Pr[A^{R(\cdot)}(1^n) = 1] \ge \frac{1}{p(n)}
$$

Point: Poly-many (nT) hybrids

$$
B(1^n, t), t \in \{0, 1\}^n
$$

- 1. $l \leftarrow [n], i \leftarrow [T]$, not 2^l nodes because we can use T
- 2. First l levels uniform as random function
- 3. First i query in level $l+1$ as random function. Use t as $(i+1)$ th query. Remaining queries use GGM.
- 4. Remaining level $>$ 1+1 follow GGM tree
- 5. Output: $A^{O(·)}(1^n)$, which results in an output of 0 or 1.

Idea: A can only visit poly-many nodes: $T(n)$: $Time(A)$ so the adversary can choose arbitrary paths depending on where its first query led it. If there are l levels, and l equals 0, then it's just 0 or 1. If l equals n, then we have the original problem. Hybrid Lemma: \Rightarrow B breaks g w.p. $\geq \frac{1}{n(n)n}$ $p(n)nT(n)$

 $PRG \Rightarrow 2n$ -bit PRG \Rightarrow PRF \Rightarrow CPA-secure

It is not clear how to prove that CPA secure encryption \rightarrow n+1 PRG because not all encryption schemes are random even if they are secure because they could have a fixed string.

3 One Way Functions (OWF)

It is easier to show that CPA-secure encryption implies a One Way Function than to show that CPA-secure encryption implies $n+1$ PRG. Thus, let's show OWF implies $n+1$ PRG so that by transitive properly, CPA-secure implies n+1 PRG.

 $n+1$ PRG \rightarrow 2n-bit PRG \rightarrow PRF

 \uparrow

 $OWF \leftarrow CPA-Secure Encryption$

If any one of these objects exist, all exist, otherwise none of them exist. We know about Advanced Encryption Standard (AES): $Enc_k(m)$. Let's say we have one called UVA $Enc_k(x)$. Is AES (similar to RF_n) or UVA greater?