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1 One Way Function

1.1 Definition of One-Way Functions

Definition, One-Way Functions.

A deterministic function f : {0, 1}∗ → {0, 1}∗ is a one way function if it satisfies the
following.

• Easy to compute: There is a PPT C that computes f(x) on all inputs x ∈ {0, 1}∗.

• Hard to invert: No nuPPT adversary A, there exists a negligible function ϵ that
for any n ∈ N:

Pr[A(1n, f(x)) ∈ f−1(f(x))] = 1.

A represents an adversary (often a probabilistic polynomial-time (PPT) algorithm). The adver-
sary’s goal is to invert the function f . The adversary takes 1n (which is just a string of 1’s of length
n, often used to indicate the input size) and y, which is the output of the function f(x), and tries
to find the original input x. Besides, the definition of f−1(y) is that,

f−1(y) = {x′ ∈ {0, 1}n : f(x′) = y}.

The above definition is standard in literature, but it is still hard to construct: any adversary can
only invert a tiny fraction. Many natural candidates, such as factoring, does not meet this. We
relax it, and define the Weak One-Way Function.

1.2 Definition of Weak One-Way Function

Definition, Weak One-Way Function.

A deterministic function f : {0, 1}∗ → {0, 1}∗ is a weak one-way function if it satisfies
the following.

• Easy to compute: There is a PPT C that computes f(x) on all inputs x ∈ {0, 1}∗.

• Hard to invert: There exists a polynomial q : N → N such that for any nuPPT
adversary A, for sufficiently large n ∈ N,

Pr[x← {0, 1}n; y ← f(x) : f(A(1n, y)) = y] ≤ 1− 1/q(n).

It is noticed that 1 − 1/q is the same for all adv A, but in the strong OWF, the prob. The ϵ is
different and depends on A.
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1.3 Example: Some Functions Are Easy To Invert

For any string x ∈ {0, 1}∗, there are many easy-to-compute functions:

• Identity, f(x) := x

• Constant, f(x) := 0

• Constant output length, f : {0, 1}∗ → {0, 1}4

1.4 Output Length of OWF

Lemma, Output Length of OWF.

We define that f : {0, 1}n → {0, 1}l is OWF for l = l(n). Then, we can construct a new
function, i.e., g : {0, 1}n → {0, 1}n is also OWF.

Proof: We are given a one-way function f that maps n-bit inputs to l(n)-bit outputs, where l(n)
could be different from n. Our goal is to construct a new function g : {0, 1}n → {0, 1}n that has the
same input and output size (i.e., n-bit inputs and n-bit outputs) and is also a one-way function.

Case 1: l(n) ≥ n. In this case, the output length of f is greater than or equal to n, meaning f
maps to a space that has at least as many possible outputs as inputs. We can define g as:

g(x) = first n bits of f(x)

That is, g(x) takes the first n bits of the output of f(x). Since f is one-way, finding a preimage of
g(x) (i.e., finding x from g(x)) would be as hard as inverting f(x), because if you can invert g(x),
you can also invert f(x) by reconstructing its output and checking consistency.

Thus, g(x) is also a one-way function.

Case 2: l(n) < n. In this case, the output length of f is less than n, meaning f compresses the
input space, potentially making inversion easier. To deal with this, we can construct a new function
g that incorporates both f(x) and some of the input x itself to ensure that g is still one-way.

Define g as follows:
g(x) = (f(x),first n− l(n) bits of x)

In this construction:

• f(x) is the output of the original one-way function, which has l(n) bits.

• The second part consists of the first n− l(n) bits of the input x, ensuring that the total length
of the output is exactly n bits.

To invert g(x), an adversary would need to invert f(x), which is computationally hard (since f is
a one-way function), and also recover the first n− l(n) bits of x, which are directly part of g(x).

Thus, inverting g would require inverting f , which by assumption is difficult. Therefore, g(x) is
also a one-way function.

In both cases—whether l(n) ≥ n or l(n) < n—we can construct a new function g : {0, 1}n → {0, 1}n
from the given one-way function f : {0, 1}n → {0, 1}l, and this new function g is also a one-way
function.
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1.5 Example: Any PRG is one-way

Theorem: If g : {0, 1}∗ → {0, 1}∗ is a PRG, then g is a OWF.

Proof: Suppose g is a PRG, which implies it stretches input by a polynomial amount and is
computationally indistinguishable from a random string of the same length. We aim to show that
f(x) = g(x) is a one-way function (OWF).

1. f is a polynomial-time function because g is polynomial-time computable.

2. Assume for contradiction that there exists a polynomial-time algorithm A, such that for
infinitely many n ∈ N,

Pr[A(1n, y) ∈ g−1(y) : y = g(x)] ≥ 1

p(n)
.

Construct an algorithm B(t) as follows:

B(t) =

{
g(x), if t ∈ g({0, 1}n),
U = {0, 1}2n, if t ∈ U2n.

Steps:

(a) x′ ← A(t)

(b) Output: g(x′) = t

Then, we have the following probabilities:

Pr[B(t) = 1 | t← g(x)] =
1

p(n)
,

and

Pr[B(t) = 1 | t← U2n] ≤
2n

22n
=

1

2n
.

This leads to a contradiction because if A can invert g with non-negligible probability, it
would contradict the pseudo-randomness of g.

1.6 Fact: ∃OWF ⇒ NP ̸= P

Theorem: Suppose that there exists a one-way function (OWF) f , then there exists a language
L ∈ NP such that L /∈ P .

Proof: The idea is to:

1. Define a language L ∈ NP using f .

2. Assume for contradiction that NP = P , so there exists a polynomial-time algorithm D that
decides L.

3. Construct a reduction that uses D to invert f , leading to a contradiction.
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A first attempt is to define the language as:

L := {f(x) : x ∈ {0, 1}n}.

This implies L ∈ NP , since for every y ∈ L, the witness of y is x such that f(x) = y. However,
this L does not help invert f , because D only outputs a single bit, giving no information about x.
Moreover, if f is a permutation (i.e., a one-way permutation), deciding L becomes trivial.

To address this, we augment L with all prefixes of x, defining:

L := {(f(x), x[1...i]) : x ∈ {0, 1}n, i ∈ [|x|]}.

Thus, for any y = f(x), the reduction can retrieve the first bit of x by running D iteratively as
follows:

D(y, b1), D(y, b1b2), D(y, b1b2b3), . . . , D(y, b1b2 . . . bn).

In each iteration, the next bit bi of x is learned if D(y, b1 . . . bi−1bi) accepts. This process recon-
structs x, which contradicts the assumption that f is a one-way function. Hence, NP ̸⊆ P .

Furthermore, this proof can be extended to imply that NP ̸⊆ BPP , since similar reasoning applies
for probabilistic polynomial time.

2 Primes and Factoring

Prime Number Theorem: Define π(x) as the number of primes ≤ x. The Prime Number
Theorem (PNT) states that primes are dense.

π(N) ∼ N

ln(N)
as N →∞.

Here, π(N) is the number of primes less than N .

Theorem (Chebyshev, 1848): For all x > 1,

π(x) ≥ x

2 log2(x)
.

Note: The above form of Chebyshev’s theorem is easier to prove, but the more famous version
of the Prime Number Theorem is π(x) ∼ x

ln(x) when x → ∞, where the logarithm is base e. In
Chebyshev’s version, the logarithm is base 2.

Using this, if x ∈ {0, 1}n and x ∈ [2n], we have:

Pr[x is prime] ≥
2n

2 log(2n)

2n
=

1

2n
.
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2.1 Assumption: Factoring

For any adversary A, there exists a negligible function ϵ(n) such that:

Pr[(p, q)← Π2
n; r ← p · q : A(r) ∈ {p, q}] < ϵ(n),

where Πn := {p < 2n : p is prime} is the set of primes less than 2n.

Define mul : N2 → N as follows:

mul(x, y) =

{
1 if x = 1 or y = 1 (eliminating trivial factors),

x · y otherwise.

It is easy to compute mul(x, y). For many pairs (x, y), it is easy to invert with probability at least
3/4 when x · y is even. However, it is not a strong OWF (One-Way Function).

Theorem: If the factoring assumption is true, then mul is a weak OWF.

Proof: The function mul is easy to compute, but is it hard to invert?

Assume for contradiction (AC) that for all polynomial q(n), there exists a non-uniform PPT
(nuPPT) adversary A such that for infinitely many n ∈ N:

Pr[(x, y)← {0, 1}n; z = x · y : mul(A(12n, z)) = z] > 1− 1

q(n)
.

This is the negation of the weak OWF assumption.

Now, we construct an adversary B that breaks factoring:

Algorithm B(12n, z):

1. Sample (x, y)← {0, 1}n.

2. If both x and y are prime, let z̄ ← z; otherwise, let z̄ ← mul(x, y).

3. Run (x′, y′)← A(12n, z̄).

4. Output (x′, y′) if both x and y are prime and z = x′ · y′.

We intentionally make the input to A uniform in {0, 1}2n.

By Chebyshev’s Theorem, both x and y are prime with probability at least:

1

(2 log(2n))2
=

1

4n2
.

Hence, B fails to pass z to A with probability at most 1− 1
4n2 .

By the assumption (AC), A fails to invert z̄ with probability at most 1
q(n) . Choose q(n) = 8n2 and

construct A correspondingly.

By the union bound, the failure probability of B is at most:

Pr[z ̸= z̄ ∪A fails] ≤ Pr[z ̸= z̄] + Pr[A fails] ≤ 1− 1

4n2
+

1

8n2
= 1− 1

8n2
.

Thus, B breaks factoring with probability at least 1
8n2 , which is greater than negligible, contradict-

ing the factoring assumption.

5 of 6



Note: The above reduction assumes efficient primality testing, which is not necessary but left as
an exercise.

Conclusion: The reduction from the factoring assumption to the construction of OWF (such as
mul) is a common pattern in cryptography.
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