
; CS6222 Cryptography <

Topic: A Universal One-way Function Date: Oct 1, 2024

Lecturer: Wei-Kai Lin (TA: Arup Sarker) Scriber: Eric Xie, Jinye He

1 A Universal One-Way Function

“Cryptographers Seldom Sleep Well”

—— Silvio Micali, personal communication to Joe Kilian, 1988

In the last lecture, we constructed a one-way function (OWF) assuming that factoring is hard.
Unfortunately, we do not know how to prove factoring is hard, and Shor’s algorithm [Wik] seems
to be evidence that factoring might be easy in the future. So, cryptographers want to construct
a OWF based on weaker assumptions. Fortunately, if we assume that a valid OWF exists, it is
possible for us to construct a OWF solely based on that assumption. That is the universal OWF.

1.1 Universal OWF Construction

The idea of constructing a universal one-way function (OWF) is to construct a function that can
computes any efficiently computable function. Since any OWF must be easy to compute with
a constant size Turing machine, we can use random strings to sample such a Turing machine.
Even though we may not know the exact machine, we can still achieve this with almost constant
probability.

Theorem 1. If there exists a OWF, then the following polynomial-time computable function
funiversal is a weak OWF.

Proof. We will construct the function funiversal and show that it is a weak OWF. As shown in the
last lecture, weak OWFs can be converted to strong OWFs.

Construction of funiversal. For an input y, where the length of the input |y| = n.

1. Represent y as M |x, where y is interpreted as a pair (M,x) consisting of a Turing machine
M and a bitstring x, with |M | = log n and |x| = n− log n;

2. Run M on x for T = n2 steps;

3. If M halts within T steps, output (M,M(x)). Otherwise, output ⊥.

Now, assume that g is a one-way function (OWF), though we do not know the exact function. There
exists a Turing machine Mg that computes g in polynomial time. Let |Mg| be the description length
of Mg, and note that we can pad the description of any Turing machine with a special ⊥ symbol
to arbitrary length. For sufficiently large n, the first random log n bits of y will correspond to Mg

with probability 1/n. Hence, the output of funiversal(y) is exactly g(x).

We now claim that funiversal is a weak OWF. For simplicity, we omit the subscript of the universal
OWF in the following part of the proof. Suppose f is not a weak OWF. Then, there exists a

1 of 3

non-uniform probabilistic polynomial-time (NUPPT) algorithm A such that, for every polynomial
q and infinitely many n,

Pr
y←{0,1}n

[A(1n, f(y)) ∈ f−1(f(y))] ≥ 1− 1/q(n).

In particular, we can take q(n) = n2. For n ≥ 2|Mg | and random n-bit input y = M∥x, the
probability of that M represents Mg is 1

2logn = 1
n . Let x′ ← {0, 1}n−logn, z′ = g(x′) and M ′ ←

{0, 1}logn. Now we construct an NUPPT B to invert g as follows:

1. Run A(1n, z′) to output y;

2. Interpret y as (M,x);

3. If z′ = g(x), output x; otherwise output ⊥.

Notice that

1

n2
≥ Pr

x′←{0,1}n−logn

M ′←{0,1}logn

[A(1n, f(M ′∥x′)) /∈ f−1(f(M ′∥x′))]

≥ Pr
x′←{0,1}n−logn

M ′←{0,1}logn

[A(1n, f(M ′∥x′)) /∈ f−1(f(M ′∥x′))|M ′ = Mg] Pr
M ′←{0,1}logn

[M ′ = Mg]

= Pr
x′←{0,1}n−logn

[A(1n, f(Mg∥x′)) /∈ f−1(f(Mg∥x′))] Pr
M ′←{0,1}logn

[M ′ = Mg]

= Pr
x′←{0,1}n−logn

[A(1n, f(Mg∥x′)) /∈ f−1(f(Mg∥x′))]
1

n
.

Then we have

Pr
x′←{0,1}n−logn

[B(1n, g(x′)) /∈ g−1(g(x′))] = Pr
x′←{0,1}n−logn

[A(1n, f(Mg∥x′)) /∈ f−1(f(Mg∥x′))] ≤ n· 1
n2

=
1

n

which implies that g is not a OWF, resulting in a contradiction.

We omitted an explanation in the previous proof for why we set the running time T as n2. The fol-
lowing lemma clarifies that there exists an OWF computable in O(n2) time, assuming the existence
of an OWF.

Lemma 2. If there exists a OWF g computable in time nc, then there exists then there is some
OWF g′ computable in time O(n2).

Proof. For any input x ∈ {0, 1}nc
, interpret x = x1∥x2 s.t. |x1| = nc − n, and then define

g′(x) = g′(x1∥x2) := x1∥g(x2). Let m = nc be the input size of g′. It is easy to see that g′ is
computable in O(m2) time, and it follows by standard reduction that g′ is hard to invert if g is a
OWF.

Although this construction is theoretically sound, it is highly inefficient in practice. For instance,
suppose there exists a one-way function that can be computed by a Turing machine with a descrip-
tion length of 1000 bits. To ensure the universal OWF is hard to invert, we would need the input
size n such that log n ≥ 1000. This implies that the universal OWF would only be secure for inputs
of size n = |x| ≥ 21000, which is impractically large.

2 of 3

2 From OWF to PRG

Next, we aim to demonstrate that a PRG can be constructed from OWF. We first recap and
compare the properties of PRGs and OWFs.

PRG: efficient, expanding, pseudorandom.

OWF: efficient, hard to invert.

Differences between OWF and PRG:

• Output of OWF can be shorter or longer, but PRG must be expanded.

• OWF just needs to be hard to invert, doesn’t need to be pseudorandom.

Properties of OWF:

• The output of an OWF, when given a uniformly random input, must exhibit sufficient ran-
domness. (Otherwise, one could guess randomly and have a reasonable probability of finding
the preimage.)

• It must be difficult to predict the input x from f(x), even if the OWF f is a one-to-one
function, meaning x is uniquely determined by f(x). The OWF introduces additional pseu-
dorandomness.

References

[Wik] Wikipedia. Shor’s algorithm.

3 of 3

	A Universal One-Way Function
	Universal OWF Construction

	From OWF to PRG

