
Writeup for Thursday, Oct 3

Sadhika Dhanasekar

October 3, 2024

1 Recap on One Way Function

AOneWay Function (OWF) is easy to compute and hard to invert: ∀NUPPTA,∃ negl ϵ(·),∀ n ∈
N,Pr[A(y) ≤ f−1(y) ∗ y ∗ f(x)] < ϵ(n) for all x← {}n

2 OWF ⇒ PRG

• f(x) is rand if x is

• given f(x) hard to find x

Permutation: one-to-one/onto→ every input in the domain has a unique output in the range
and vice versa.
OWF f is a one-way permutation is f is permutation. In addition, one way permutation is
PRG but not with expansion. The last bit of input x is hard to find and thus contributes to
the pseudo-randomness.
Pr[a = f(x)]− Pr[a = x]

3 Hard Core Predicate

f : {}n → {}n function, h : {}n{0, 1} is Hard Core Predicate (HCP) with respect to f if
∀ NUPPTA,∃ neglϵ,∀ n, Pr[A(an, f(x) = h(x)] ≤ 1

2
+ ϵ(n) for x← {}n

Suppose f is a negligible permutation with given a n-bit input, x, we get an (n+1) bit input
y that is the PRG when combined with the HCP. Using hard-core predicate h for the func-
tion f , we get one extra bit that is hard to predict from y and exhibits a close-to uniformly
random distribution.

Theorem: ∃f, h such that f is OWP and h is HCP with respect to f , ⇒ g(x) := f(x)||h(x)
is PRG. Proof by picture: Assume by contraction that this is not true. There exists an ad-
versary A that takes in a (n+1) bit string that can tell you whether the input, t is from g(x)
or a uniform distribution. Now, say that the first n bits of t is from y = f(x) and the last bit
is sampled from a uniform distribution of 0,1 to create t. The work the adversary is doing
is a reduction of B against h. If A says t is from g(x), it outputs b; if it says t is a uniformly

1

random string, then it outputs ¬b. This output will just equal the HCP with high probability.

Ex. f(x) := GPT (x), h(x) := parity(y(x))? This is unknown. f(x, z) = GPT (x) where x is
an n bit string and z is a 1 bit string, where h(x, z) := z.

Construction of Hard Core Predicate: Suppose f is OWP, then f ′(x, r) := f(x)||r; x, r ←
{0, 1}n; h(x, r) := x ⊙ r =

∑
xi ∗ ri mod 2 where ⊙ is the inner product. Theorem: f ′

is OWP , h is HCP with respect to f ′. Goldreich and Levin in 1987 constructed a similar
formula for OWF instead of OWP.

• f ′ is permutation (f ′)(a, b) := f−1(n), a

• f ′ is OWF, easy to compute

Similar to proof from the previous section using reduction B, whatever A outputs, we just
take the first n bits to be x.

Given input n with some hard bits in the middle, after applying f , can we determine the
hard bits in this new n. The question is determining many hard bits do we need. Z → Z
given log(n) bits. Let’s sample another input string, r, that is a uniformly random string
with random bits of 1 that we are sampling out of the input string with is the intuition
behind the HCP construction.

Proof: Assume h is not HCP. ∃ A, poly p for infinitely many n, Pr[A(f ′(x, r)) = h(x), r)] ≥
1
2
+ 1

p(n)
where x and r are uniformly and randomly sampled. We want an Algorithm, B,

that inverts f .

Warm up: Pr[A(f(x)||r) = h...)] = 1 where x and r are uniformly and randomly sampled.
This can be simplified to: ∀ x, r, A(f(x)||r) = x⊙ r as we only care about the random bit, r.
If we have a good A, then given the input 1 followed by n number of 0s, A(f(x)||1000....0) =
x⊙ 100.000 = x1. The concatenation is referred to as e1whereei := 000....10..... where there
is a i number of 0s on either end. Thus, for all i, A = (y||ei) = xi

Warm up 2: Pr[....] ≥ 3
4
+ 1

p(n)
For B(y),

1. for all i = 1....n, zi ← A(y||ei)⊕A(y||r⊕ ei) which is similar to (x⊙ r)⊕ (x⊙ (r⊕ ei)
which equals x⊙)ei = xi

2. will continue next class

3. output: z1...zn

2

