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1 Construction of PRG from OWF

Today, we continue and finish the proof of the following Theorem by Goldreich and Levin. Let’s
recall and continue.

Theorem 1. Construction of Hard-Core Predicate for Permutation
Suppose f is an one way permutation, and we sample x,r < {0,1}", and we construct:

flar) = f(@)|r

hz,r)=z0r= Zajz -r; (mod 2)
i=1

then f' is an one way permutation, while h is a hard-core predicate with respect to f.

Proof. We first check f’. Tt is a permutation because (f')~!(a,b) = (f~*(a),b). Then f’ is OWF, it
is straightforward that it is easy to compute. For the analysis of hardness to invert, it is similar to

the proof of Theorem 77, note that we substitute the sampling of a uniformly random bit b & {0,1}

to v/ & {0, 1}"™ and everything follows similarly. It remains to check that h is a hard-core predicate,
we proceed by contradiction. Suppose h is not a hard core predicate, then by definition there exists
an NUPPT A and a polynomial p such that for infinitely many n € N:

1 1
!
= >4
PrA(f (7)) = ha, )] 2 5+ s
We want to construct an adversary B that can invert f. Firstly we consider the perfect case, which
is:

Pr[A(f'(z,7)) = h(z,r)] =1
In this case we observe that it means V z,r, we have A(f(z)||r) = x © r. For example we have:

thus in general, this applies to the case when for the strings ey, ..., e,, for ¢; =0, ..., 1,...0, it means
i" Dbit is 1, while all other bits are zero. Then for B, we can just simply run A(ylle;) = z; for n
times, and we can see that B will always successfully invert f, which is a contradiction. Then we

relax the probability of a little bit, say:
Pr[A(f'(z,r)) = h(z,7)] = 3 + b
2 ’ ’ 4 p(n)

Then B(y) will be :Vi € {1,...,n}, we will get z; < A(ylle;), and we repeat this procedure n times,
we get 21 - - - z, and hopefully this will be z. However, the overall successful probability for this is
low, thus this will not work as we wished. Now we replace:

zi = Alylr) © Alyllr @ e:)
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for uniformly random r, this is well-defined because one can show:
(zOr)@(xo(rde)) =cr0e =a;

and we will succeed. Note that we will have the following probability:

1
+2—

Pr[zi = xl] Z p(n)

1

x,r 5

following from the constructions above and by union bound. However, we note that repeat this
procedure for another n round is not satisfactory enough.

Now, we want to ask this question: can this procedure work for all pairs x and y? The answer is

No, because this procedure depends on fixed y, we cannot randomly sample another y, making this

probability highly dependent. We make a new claim: there are many “good” z: we define the set:

1
2p(n)

G =z € {0,1}": Pr[A(f(@)||r) =2 © 1] z%+ }

1
2p(n)

and we claim that the cardinality of this set is |G| > -2". We modify our procedure:

For j=1,....m:
1. Randomly sample r < {0,1}".
2. We get z;; + A(yl|r) @ A(y||r @ e;). Note that:

(zOr)d (o (rde)) =06 =ua;

and

—_

1
Prlzii =x;] > =+ —
:E,r[ 4 ] 2 p(n)

3. Note that z;; is independent from j € [m], and we just take z; to be the majority:

zi <= maj(zil, .., Zin)

We consider the event X, = the event z;; = x;, and the expectation is:

and we have m ,
Pr[.g:] <Sl=0-0)-mpu< o~ 2(m-a?)
JjEIM

by Chernoff bound. Which indicates if we take m = n - o, everything will follow. Observe that in
this reduction, we have two failing cases:

1.z ¢ G.

2. x; fails in the above procedure.
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Thus our total failure probability will be:

1
Prlfailure] < Pr|x Gl+n-e ¥ = (1 - ——) + negl
failure] < Prlz ¢ G (1= 5iy) + g

so our success probability should be

1
Pr|B successfully invert] > —— — negl >
| 12 200 poly(n)

which conclude this case.
Now, we face the next challenge: how can we push the probability from % to our desired % + Tln)?

This is not easy, if we take % instead of % in our procedure, we will have the probability

1 1
o] >
'E?E[ZU il 2 5 + p(n)
which indicates that the union bound fails the majority selection. Before pushing the probability,
let’s prove the claim regarding

1
G = {a € (0.1} BrlA (@)l = 07] > 3+ o)
We proceed by contradiction, assume |G| < #(n) 2" and we denote A(f(z)||r) = x @ r by event
T. Then we have

But we start by Pr, .[T] > % + ﬁ, which is a contradiction. Hence the claim is proved.

Now, we back to the main theorem, we hope the term A(y||r) in z;; < A(y||r) ® A(y||r @ e;) to be
x ®rj, but we cannot guarantee this anymore. One can check that it is equivalent to just guessing
random g;, we hope g; =  ® rj. From now on, we won’t call A(y||r;) anymore.

Now, we are ready to do the final and formal reduction B(y):

1. We sample uy, ..., uy < {0,1}"™ independently, and we get pairwise independent 71, ..., 7y, by
performing bitwise XOR on subsets of (u1, ..., uy), with £ = log(m). We also sample by, ..., by <
{0,1} independently, and again we perform bitwise XOR to obtain pairwise independent
Gl -y gm- We hope this will hold:

bkzl’@ukaZG[ﬂ

If this hold, we will have the following probability:
1
Pribp =x Qup Vk € [{]] = = =

1
2¢ m
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and then we will have g; =« ® r; for all j € [m], which indicates:

then the following probability hold:

) 1
Prigj=x®r;Vj e m]] = p-

2. Then for each i, we compute the following;:
zij < A(yllr; ® e;) © g5 Vi € [m]
3. We pick the major: z; = maj(zi1, ..., Zim)

4. Output 21, ..., zp.

By choosing m = poly(n, a)), we claim that we can achieve the desired result. We skip the detailed
probability analysis, we just provide the sketch here: Suppose f~!(y) € G, and suppose by = @ uy,
for all k € [¢], then by the Chebyshev’s inequality (Theorem 2 below), we will have

Prlz; # xi] < O(%)

and by the union bound, we will have:

Pr[3ist. 2 # 2] < O(—)

m
From these calculations, we see that the event f~1(y) € G fails with probability 1 — T%n)’ while
the event by, = z ® uy, for all k € [{] fails with probability 1 — L. Combining everything together,
we conclude the proof, the result follows. O

Theorem 2. Chebyshev’s Inequality
For pairwise independent variables X1, Xa, ..., X, € [0,1], we have

Prl| Y aj—m-pl > om) < ——L

JEm]

where p = Elz;] for all j.
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