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1 Construction of PRG from OWF

Today, we continue and finish the proof of the following Theorem by Goldreich and Levin. Let’s
recall and continue.

Theorem 1. Construction of Hard-Core Predicate for Permutation
Suppose f is an one way permutation, and we sample x, r ← {0, 1}n, and we construct:

f ′(x, r) := f(x)∥r

h(x, r) := x⊙ r =
n∑

i=1

xi · ri (mod 2)

then f ′ is an one way permutation, while h is a hard-core predicate with respect to f ′.

Proof. We first check f ′. It is a permutation because (f ′)−1(a, b) = (f−1(a), b). Then f ′ is OWF, it
is straightforward that it is easy to compute. For the analysis of hardness to invert, it is similar to

the proof of Theorem ??, note that we substitute the sampling of a uniformly random bit b
$←− {0, 1}

to b′
$←− {0, 1}n and everything follows similarly. It remains to check that h is a hard-core predicate,

we proceed by contradiction. Suppose h is not a hard core predicate, then by definition there exists
an NUPPT A and a polynomial p such that for infinitely many n ∈ N:

Pr
x,r

[A(f ′(x, r)) = h(x, r)] ≥ 1

2
+

1

p(n)

We want to construct an adversary B that can invert f . Firstly we consider the perfect case, which
is:

Pr
x,r

[A(f ′(x, r)) = h(x, r)] = 1

In this case we observe that it means ∀ x, r, we have A(f(x)∥r) = x⊙ r. For example we have:

A(f(x)∥10 · · · 0) = x1 · · ·xn ⊙ 10 · · · 0 = x1

thus in general, this applies to the case when for the strings e1, ..., en, for ei = 0, ..., 1, ...0, it means
ith bit is 1, while all other bits are zero. Then for B, we can just simply run A(y∥ei) = xi for n
times, and we can see that B will always successfully invert f , which is a contradiction. Then we
relax the probability of a little bit, say:

Pr
x,r

[A(f ′(x, r)) = h(x, r)] =
3

4
+

1

p(n)

Then B(y) will be :∀i ∈ {1, ..., n}, we will get zi ← A(y∥ei), and we repeat this procedure n times,
we get z1 · · · zn and hopefully this will be x. However, the overall successful probability for this is
low, thus this will not work as we wished. Now we replace:

zi ← A(y∥r)⊕A(y∥r ⊕ ei)
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for uniformly random r, this is well-defined because one can show:

(x⊙ r)⊕ (x⊙ (r ⊕ ei)) = x⊙ ei = xi

and we will succeed. Note that we will have the following probability:

Pr
x,r

[zi = xi] ≥
1

2
+ 2

1

p(n)

following from the constructions above and by union bound. However, we note that repeat this
procedure for another n round is not satisfactory enough.
Now, we want to ask this question: can this procedure work for all pairs x and y? The answer is
No, because this procedure depends on fixed y, we cannot randomly sample another y, making this
probability highly dependent. We make a new claim: there are many “good” x: we define the set:

G := {x ∈ {0, 1}n : Pr
r
[A(f(x)∥r) = x⊙ r] ≥ 3

4
+

1

2p(n)
}

and we claim that the cardinality of this set is |G| ≥ 1
2p(n) · 2

n. We modify our procedure:
For j = 1, ...,m:

1. Randomly sample r ← {0, 1}n.

2. We get zij ← A(y∥r)⊕A(y∥r ⊕ ei). Note that:

(x⊙ r)⊕ (x⊙ (r ⊕ ei)) = x⊙ ei = xi

and

Pr
x,r

[zij = xi] ≥
1

2
+

1

p(n)

3. Note that zij is independent from j ∈ [m], and we just take zi to be the majority:

zi ← maj(zi1, ..., zin)

We consider the event Xj := the event zij = xi, and the expectation is:

µ = E[Xj = 1] =
1

2
+

1

p(n)

and we have
Pr[

∑
j∈[m]

≤ m

2
] = (1− δ) ·m · µ ≤ e−Ω(m·α2)

by Chernoff bound. Which indicates if we take m = n · α2, everything will follow. Observe that in
this reduction, we have two failing cases:

1. x /∈ G.

2. xi fails in the above procedure.
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Thus our total failure probability will be:

Pr[failure] ≤ Pr[x /∈ G] + n · e−Ω(n) = (1− 1

2p(n)
) + negl

so our success probability should be

Pr[B successfully invert] ≥ 1

2p(n)
− negl ≥ 1

poly(n)

which conclude this case.
Now, we face the next challenge: how can we push the probability from 3

4 to our desired 1
2 +

1
p(n)?

This is not easy, if we take 3
5 instead of 3

4 in our procedure, we will have the probability

Pr
x,r

[zij = xi] ≥
1

5
+

1

p(n)

which indicates that the union bound fails the majority selection. Before pushing the probability,
let’s prove the claim regarding

G := {x ∈ {0, 1}n : Pr
r
[A(f(x)∥r) = x⊙ r] ≥ 3

4
+

1

2p(n)
}

We proceed by contradiction, assume |G| < 1
2p(n) · 2

n, and we denote A(f(x)∥r) = x ⊙ r by event
T . Then we have

Pr
x,r

[T ] = Pr
x,r

[x ∈ G] + Pr
x,r

[T | x /∈ G] · Pr
x
[x /∈ G]

≤ |G|
2n

+ (
3

4
+

1

2p(n)
) · 1

<
1

2p(n)
+

3

4
+

1

2p(n)

=
3

4
+

1

p(n)

But we start by Prx,r[T ] ≥ 3
4 + 1

p(n) , which is a contradiction. Hence the claim is proved.

Now, we back to the main theorem, we hope the term A(y∥r) in zij ← A(y∥r)⊕A(y∥r ⊕ ei) to be
x⊙ rj , but we cannot guarantee this anymore. One can check that it is equivalent to just guessing
random gj , we hope gj = x⊙ rj . From now on, we won’t call A(y∥ri) anymore.
Now, we are ready to do the final and formal reduction B(y):

1. We sample u1, ..., uℓ ← {0, 1}n independently, and we get pairwise independent r1, ..., rm by
performing bitwise XOR on subsets of (u1, ..., uℓ), with ℓ = log(m). We also sample b1, ..., bℓ ←
{0, 1} independently, and again we perform bitwise XOR to obtain pairwise independent
g1, ..., gm. We hope this will hold:

bk = x⊙ uk ∀k ∈ [ℓ]

If this hold, we will have the following probability:

Pr[bk = x⊙ uk ∀k ∈ [ℓ]] =
1

2ℓ
=

1

m
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and then we will have gj = x⊙ rj for all j ∈ [m], which indicates:⊕
k∈Set j

bk = x⊙
⊕

k∈Set j

uk

then the following probability hold:

Pr[gj = x⊙ rj ∀j ∈ [m]] =
1

m

2. Then for each i, we compute the following:

zij ← A(y∥rj ⊕ ei)⊕ gj ∀j ∈ [m]

3. We pick the major: zi = maj(zi1, ..., zim)

4. Output z1, ..., zn.

By choosing m = poly(n, α), we claim that we can achieve the desired result. We skip the detailed
probability analysis, we just provide the sketch here: Suppose f−1(y) ∈ G, and suppose bk = x⊙uk
for all k ∈ [ℓ], then by the Chebyshev’s inequality (Theorem 2 below), we will have

Pr[zi ̸= xi] ≤ O(
1

m
)

and by the union bound, we will have:

Pr[∃ i s.t. zi ̸= xi] ≤ O(
n

m
)

From these calculations, we see that the event f−1(y) ∈ G fails with probability 1 − 1
2p(n) , while

the event bk = x ⊙ uk for all k ∈ [ℓ] fails with probability 1 − 1
m . Combining everything together,

we conclude the proof, the result follows.

Theorem 2. Chebyshev’s Inequality
For pairwise independent variables X1, X2, ..., Xm ∈ [0, 1], we have

Pr[|
∑
j∈[m]

xj −m · µ| ≥ δm] ≤ 1− µ

m− δ2

where µ = E[xj ] for all j.
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