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1 Recap

We will start by briefly recalling an important definition from last class:

Definition 1 (Pairwise Independent Hash Family). A family of hash functions H := {h :
{0, 1}n → {0, 1}n} is pairwise independent if, ∀x, h(x) is chosen uniformly random such that,
∀a ∈ {0, 1}n, Prh←H[h(x) = a] = 1

2n
, and ∀x1 ̸= x2, (h(x1), h(x2) are independent variables.

A good example of this that we will refer to later is for the family of hash functions H :=
{hM := M ⊙ x},M ∈ Zm×n

2 .

2 Motivation

Consider a OWF that is not a permutation such that, for example, each output has two
input. This means that there are some values in the range that are not mapped to, which
wastes some randomness of the OWF. Typically, if f is a OWF, then we can create a PRG
g such that g(x, r) = f(x)||r||x⊙ r, where x⊙ r was our hardcore bit.

To recover the randomness, we can construct a PRG g differently such that g(x,M1,M2, r) =
M1||M2||r||M2⊙ f(x)||M1⊙ x||x⊙ r. We can see instances of the example hash function we
mentioned earlier that required matrix multiplication. Since these are pairwise independent
functions, any two x are unlikely to map to the same output for M1 ⊙ x, which allows us to
recover the remaining randomness.

This is helpful, but it is currently not clear how many bits we need to include from the two
hashes M1 ⊙ x and M2 ⊙ f(x) to fully recover the randomness, which is where the idea of
entropy can help us.

3 Entropy

Entropy is a measure of how random or unpredictable our data is, and we define it in the
following ways:

Definition 2 (Min-Entropy). Suppose X is a random variable. We define the min-entropy
of X to be the following:

H∞(X) := min
x

{
log

(
1

Pr[X = x]

)}
.
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Definition 3 (Shannon Entropy). Suppose X is a random variable. We define the min-
entropy of X to be the following:

H(X) :=
∑
a

pX(a)(− log(pX(a)) = Ex[log

(
1

Pr[X = x]

)
.

We note an example of applying the definition of entropy:

For X = U3||000, we have that H(X) = (1
8
∗ − log(1

8
)) ∗ 8 = 3. We can think of entropy as

the number of random bits in the variable X.

Theorem 4 (Leftover Hash Lemma). Suppose H := {h : {0, 1}n → {0, 1}n} is a pairwise
independent has family and that there is a random variable X such that H∞(X) ≥ k ∈ N.
Then, over the random space of X, for h← H, ∆[(h, h(x)), (h, Um)] ≤ ϵ if m = k− 2 log(1

ϵ
)

for all ϵ > 0.

We can apply the above definition in an example as follows: suppose X is a random vari-
able and h is a hash from the leftover hash lemma such that m = k − 2 log(1

ϵ
). What is

Prh,y=Um [(h, y) ∈ Supp(h, h(x))] equal to, where Supp(Z) := {a|Pr[Z = a] > 0}? The
answer here is 1− ϵ, since, from the leftover hash lemma, we are given that (h, y) and (h, Un)
are statistically close.

Definition 5 (Weak Pseudo-Entropy Generator (PEG)). A function F : {0, 1}n → {0, 1}m is
a weak PEG if, for X ← Un, {F (X)} ≈ {Yn} such that H(Yn) ≥ k+ 1

100n
, and H(F (X)) ≤ k.
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