
; CS6222 Cryptography <

Topic: Construction of PRG from OWF Date: Oct 22, 2024

Lecturer: Wei-Kai Lin (TA: Arup Sarker) Scriber: Liran Li

1 Construction of PRG from OWF

Firstly we recall the leftover hash lemma:

Theorem 1. Leftover Hash Lemma
We have a family of hash functions H := {h : {0, 1}n → {0, 1}m}, the hash functions are pairwise
independent, and we have a random variable X ← {0, 1}n, suppose the minimal entropy H∞(X) ≥
k, then over the random space of X, h← H, the statistical distance:

SD[(h, h(x)), (h, Um)] ≤ ϵ

if m = k − 2 log(1ϵ) for all ϵ > 0, that is to say, (h, h(X)) is ϵ-close to uniform distribution of
|h|+m bits, |h| denotes the description length of the function h.

Note 2. Note that in the definition above, if x = 0, we will always have M ⊙ x = 0, which is a
boundary case. We can define M ⊙ x alternatively to be:

M ⊙ x :=

{
m (random) if x = 0

M ⊙ x if x ̸= 0

and we define h := (m,M).

Example 3. We consider the example: h := M ∈ {0, 1}n×m, a random matrix. If M is squared
matrix, it has a good chance to be invertible, given this M ⊙ x is not likely to be close to uniform.

Also, we recall the definition of weak pseudo-entropy generators:

Definition 4. Weak Pseudo-Entropy Generator
F is a weak pseudo-entropy generator if there exists k = k(n) such that:

1. H(F (Un)) ≤ k.

2. There exists Yn such that H(Ym(n)) ≥ k + 1
100n and {F (Un)} ≈c {Ym(n)}.

Now, we see how to construct PRG from PEG (Pseudo-Entropy Generator), we discuss the high
level construction:

Claim 5. PEG ⇒ PRG
Firstly we do entropy equalization:

G(x1, x2, ..., xm) := F (x1)∥F (x2)∥ · · · ∥F (xm)

each |xi| = n. Our goal is to have a minimal entropy version of PEG. Suppose G is “strong PEG”
(with respect to the minimal entropy), we define:

g(x1, ..., xm) := G(x1)∥G(x2)∥ · · · ∥G(xm)

1 of 2

observe that each G(xi) ≈c Y
′
n, H∞(Yn) ≥ k + 1

100n , we have after repetition:

H∞(g) ≥ m · k +
m

100n
= m · k +

n

100
(if we take m = n2)

for pseudo minimal entropy, and for the original construction we have H∞ ≤ m · k. However, it is
not the real construction yet, we use the hash functions:

g(h1, h2, x1, ..., xm) := h1∥h2∥h1(G(x1)∥G(x2)∥ · · · ∥G(xm))∥h2(x1∥x2∥ · · · ∥xm)

we want h1 : {0, 1}∗ → {0, 1}m·k+n/200 and h2 : {0, 1}∗ → {0, 1}m·(n−k)−n/400. We skipped some
steps, note that knowing the number k is crucial here, all the constructions above rely on the fact
that we know k, otherwise, we have to try any k ∈ {1, ...,m}. Finally, after getting k, we have the
PRG:

g1(x)⊕ g2(x)⊕ · · · ⊕ gk(x)⊕ · · · ⊕ gn(x)

which is pseudorandom based on the fact that just one gk is pseudorandom, by XOR trick, the whole
function is pseudorandom.

Given all the discussions above, the only remaining thing is to construct a PEG. Note that we want
to get PEG from OWF.

Definition 6. k-Regular One Way Function
A k-regular OWF is a OWF such that for all x ∈ {0, 1}n, |f−1(f(x))| = 2k. (thinks of this as a
k-to-1 mapping).

Theorem 7. We have k-regular OWF implies (n− k)-PEG.

Proof. Firstly we see the construction: suppose f is k-regular OWF, then we construct G:

G(x,M, r) := f(x)∥M ⊙ x∥M∥r∥r ⊙ x

where we have the matrix M ∈ {0, 1}k×n, |x| = n, M ⊙ x is k-bits, the output entropy of f(x) is
H(f(x)) = n−k. Entropy is still not clear yet, M and r are uniform, we don’t know the situations
of M ⊙ x and r ⊙ x. Note that we have the hardcore r ⊙ x, even x is mathematically determined,
it could be hard to compute within polynomial time, thus r⊙x can be the pseudo-entropy, we will
prove this next time.

Acknowledgement

References

2 of 2

	Construction of PRG from OWF

