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1 Construction of PEG from OWF

First, we recall the definition of a pairwise independent hash family and the Leftover Hash Lemma:

Definition 1. Pairwise Independent Hash Family
H = {h : {0, 1}n → {0, 1}n} such that over random h← H:
− ∀x ∈ {0, 1}n, h(x) is uniform in {0, 1}m
− ∀x, x′ ∈ {0, 1}n, h(x), h(x′) are independent

Theorem 2. Leftover Hash Lemma
Let H := {h : {0, 1}n → {0, 1}m} be a family of pairwise independent hash functions, and let
X ← {0, 1}n be a random variable with min-entropy H∞(X) ≥ k. Then for h ∼ H chosen uniformly
at random, we have the following bound on the statistical distance:

SD[(h, h(X)), (h, Um)] ≤ ϵ

if m = k − 2 log(1ϵ ) for all ϵ > 0, that is to say, (h, h(X)) is ϵ-close to the uniform distribution of
|h|+m bits, |h| denotes the description length of the function h.

Recall the definition of an s-regular one-way function:

Definition 3. s-Regular One Way Function
An s-regular OWF is a OWF such that for all x ∈ {0, 1}n, |f−1(f(x))| = 2s(n). (think of this as a
s-to-1 mapping).

Also, recall the definition of a pseudo-entropy generator:

Definition 4. Pseudo-Entropy Generator
F is a pseudo-entropy generator if there exists k = k(n) such that:

1. H(F (Un)) ≤ k.

2. There exists ensemble of distributions Yn such that H(Yn) ≥ k+ 1
100n and {F (Un)} ≈c {Yn}.

Claim 5. OWF ⇒ PEG
We will construct a PEG from an s-regular OWF, f , as follows:

F (x,M, r) := f(x),M, r,M ⊙ x, r ⊙ x

where f(x) ∈ {0, 1}n, M ∈ {0, 1}(s+1)×n, r ∈ {0, 1}n, M ⊙ x ∈ {0, 1}s+1, r ⊙ x ∈ {0, 1}

so H(f(x)) = n− s, H(M) = (s+ 1)n, H(r) = n, H(M ⊙ x) =?, H(r ⊙ x) =?
For F to be a PEG, we want the entropy of M ⊙x and r⊙x to be lower than if they were uniformly
random, while still being computationally indistinguishable from uniform random strings.

First we will show that r⊙x is at least somewhat determined given the remainder of the F (x,M, r)
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Lemma 6. Low Real Entropy
Given the following random variables:

X(x,M, r) := (f(x),M, r,M ⊙ x), Z(x,M, r) := r ⊙ x, Z ′ := U1

F (Un) = XZ here n = |(x,M, r)| instead of |f(x)|
For some k, H(F (Un)) = H(XZ) = k where XZ is the concatenation of X and Z

Construct ensemble Yn = XZ ′

H(Yn) = H(XZ ′)

we want to show that H(Yn) ≥ k + 1
100n

Idea: given X, x is unique, so r ⊙ x must have less entropy then U1

Since f is s-regular:
T = f−1(f(x)), |T | = 2s

Since M ⊙ x is a pairwise independent hash:

∀x′ ∈ T, x′ ̸= x, Pr
M

[
M ⊙ x′ = M ⊙ x

]
=

1

2s+1

because ∀x.M ⊙ x is uniform in {0, 1}s+1

We can get a bound on the uniqueness of x given X

Pr
M

[
∃x ∈ T s.t. M ⊙ x′ = M ⊙ x

]
≤ 1

2s+1
2s =

1

2
by union bound

the complement is

Pr [x is unique |X] >
1

2

if x is unique, it determines x⊙ r decreasing entropy of Z|X
H(Z|X) ≤ 1

2 because there is at least 1
2 probability that x is unique given X, in which case Z|X

can only take on one value and has entropy 0
H(Z ′|X) = 1 by definition
H(Z|X) + 1

2 ≤ H(Z ′|X)
⇒ H(XZ) + 1

2 ≤ H(XZ ′) by conditional entropy ∀ r.v.s X,Z. H(XZ) = H(X) +H(Z|X)
∴ H(Yn) ≥ k + 1

100n

Lemma 7. High Pseudo Entropy

{F (Un)} ≈c {Yn}, Yn defined same as before

(f(x),M, r,M ⊙ x, r ⊙ x) ≈c (f(x),M, r,M ⊙ x, U1)

Proof. Assume for the sake of contradiction, ∃ NUPPT A, poly p, s.t. for infinitely many n:

Pr [A(f(x),M, r,M ⊙ x) = r ⊙ x] ≥ 1

2
+ p(n)
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This assertion is the negation of the lemma. We want to show that this implies f is not OWF,
therefore the lemma must be true.

Our reduction won’t have access to x, only f(x), so how will we simulate M ⊙ x?
Idea: |M ⊙ x| = s+ 1,M ⊙ x is necessarily not uniform, but (M ⊙ x)[1...s− 2 log(n)] is uniform

H∞(x|f(x)) = s because f is s-regular, so by the leftover hash lemma:

SD
(
(M ⊙ x)[1...s− 2 log(n)], Us−2 log(n)

)
≤ 1

n
= ϵ

We can simulate (f(x),M, r, (M⊙x)[1...s−2 log(n)]) by guessing uniformly randomly (M⊙x)[1...s−
2 log(n)] ∼ Us−2 log(n)

We have the following bound on the probability that (M ⊙x)[1...s−2 log(n)] is supported, in other
words, (f(x),M, r, (M ⊙x)[1...s− 2 log(n)]) is valid, i.e. there exists an x and M that can produce
that string:

SD(D,U) ≤ ϵ =⇒ Pr[x ∈ sup(D)] ≥ 1− ϵ

Since we have only 2 log(n)+1 bits of M ⊙x unknown, we can try all possible suffixes until a valid
input is found in polynomial time.

We can construct the following reduction that inverts f :

B(y = f(x)) :=

M ← {0, 1}(s+1)×n

t1 ← {0, 1}s−2 log(n)

for t2 ∈ {0, 1}s−2 log(n) :

x′ ← B0(y,M, t = t1∥t2) B0 finds the preimage of f(x) given M and M ⊙ x, it is defined below

if f(x′) = y, output x′

One of the values of t1∥t2 should be a valid M ⊙ x, as proved before, so this reduction should
return an element in the preimage with non-negligable probability, assuming B0 inverts f(x) given
M,M ⊙ x with non-negligable probability.

We will construct B0 the same as was by Goldreich-Levin [GL89]. We will leave out some details
and analysis, but they can be found in prior lectures or the original reduction.

B(y,M, t) :=

r1, ..., rm pairwise independent n-bit strings

g1, ..., gm pairwise independent bits

for i = 1...n :

for j = 1...n :

zij ← A(y,M, rj ⊕ ei, t)⊕ gj where ei is the one-hot vector with ei[i] = 1

*the aim is that A(y,M, rj ⊕ ei, t) = x⊙ (g ⊕ ei) and gj = x⊙ rj

zi ← maj({zij}j=1...m)
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