
CS 6222-Cryptography, Homework 1 Due: Sep 12, 2024, 11:59pm

CS 6222-Cryptography, Homework 1
Response by: Your Name, (computing id)

Total points: 30. Points are noted after each problem.

Directions. For each problem, typeset your solution in the answer environment, and if there
are sub-problems, mark them clearly. Feel free to use as much space as you want to. Before you
submit the PDF, update 1) “Your Name” and id on the above, and 2) the “Acknowledgement”
box at the last page properly.

Policies. We re-iterate our policy. It is encouraged to think and discuss the problems before
looking for ready-made solutions. You shall acknowledge and/or reference any discussion and
published material except for lecture notes and resources of LaTeX. In any case, it is a violation
if any of the following cases happens:

• You copied text directly (from any source).

• You used any material or discussion without acknowledgement or citation.

• You are unable to explain your work orally.

This homework aims to recap preliminary concepts that will be used in later lectures. Namely,
Problems 1–4 will go through conditional probability, independent variables, and concentration
bounds. Problem 5 is borrowed from DMT2,1 and the purpose is to recap the concept of reduction,
which will be used heavily in this course.

Notation: For any n ∈ N, let [n] = {1, 2, ..., n}. For any finite set S, let |S| be the cardinality of S.

Problem 1 (Monty Hall’s problem, 1pt each). This problem considers a game between a Player
and a Host. There are n doors. Behind each door, there is at most 1 car, and the total number of
cars is m ≤ n− p for some positive integer p < n. The Host knows which door has a car, but the
Player does not. The game proceeds as below.

1. The Player picks 1 door (out of n). Let d0 ∈ [n] be the door.

2. The Host opens other p doors (other than the door d0) that have no car.

3. The Player can finally pick 1 unopened door (out of n− p). Let d ∈ [n] be the door.

4. If the final door d has a car, the Player wins. (If m = n− p, the Player always win.)

The Host may try to influence the Player from winning in Step 2. What’s the Player’s best strategy
in Step 3? For each of the following strategies, calculate the winning probability of the Player (as
functions of in n,m, p).

(a) Always finally pick d = d0.

(b) Let S be the set of unopened doors (so |S| = n−p). Finally pick d uniformly at random from
all unopened doors, S.

(c) Finally pick d uniformly at random from S \ {d0} (that is, unopened doors except for d0),

1The course was taught by Mohammad Mahmoody and David Evans, see https://uvatoc.github.io/.
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Answer.

(a)

(b)

(c)

Problem 2 (Chernoff’s inequality, 3pt each). Let X1, X2, ..., Xn be independent random (discrete)
variables in {0, 1}. Let X :=

∑
i∈[n]Xi and µ := E[X]. In this problem, we will prove that for any

δ ≥ 0

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

(a) Show the following by Markov’s inequality: for any real number s > 0 and any a ≥ 0, it holds
that

Pr[X ≥ a] ≤ E[esX ]

esa

(b) Let Y be a random variable taking values in {0, 1}, and let µY = E[Y ]. Prove for any real
number s,

E[esY ] ≤ 1 + µY · (es − 1).

Note the RHS is ≤ eµY (es−1) by 1 + x ≤ ex.

(c) Use independence of Xi’s and the above bound, show that for any real number s,

E[esX ] ≤ eµ(e
s−1).

(d) Complete the proof by finding the minimum of eµ(e
s−1)

esa as a function of s.

Pr[X ≥ (1 + δ)µ] ≤ min
s

{e
µ(es−1)

esa
} =

(
eδ

(1 + δ)1+δ

)µ

Note: for all δ > 0,
(

eδ

(1+δ)1+δ

)µ
≤ e−

δ2

2+δ
µ, which is often easier to use.

(e) [Bonus, 3pt] The above supposes that the variables Xi are discrete (and actually binary).
Prove that the inequality still holds when the random variables Xi are continuous and take
value in the interval [0, 1].

Answer.

(a)

(b)

(c)

(d)
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Problem 3 (Pairwise independent variables, 3pt). For any k ∈ N, let (u1, u2, ..., uk) ∈ {0, 1}k be
a sequence of k bits sampled uniformly and independently at random. For each set S ⊆ [k], define
random variable rS to be

rS :=
⊕
i∈S

ui,

where
⊕

denotes the XOR of a sequence of bits. Let S, T ⊆ [k] be two distinct sets. Prove that
the random variables rS and rT are independent. (Recall that random variables X,Y are defined
to be independent if for all x, y, it holds Pr[X = x ∩ Y = y] = Pr[X = x] · Pr[Y = y].)

Answer.

Problem 4 (Chebyshev’s inequality, 3pt each). Let X1, X2, ..., Xn be random variables that are
pairwise independent and for all i, there exists real numbers µ, σ such that E[Xi] = µ and Var[Xi] =
σ2. Let X =

∑
i∈[n]Xi.

(a) Prove that for any ϵ > 0, it holds that

Pr

[
|X
n

− µ| ≥ ϵ

]
≤ σ2

nϵ2
.

Hint: use Chebyshev’s inequality: for any random variable Z such that E[Z] = µ and Var[Z] =
σ2 > 0, for any t > 0, it holds that

Pr[|Z − µ| ≥ kσ] ≤ 1/k2.

(b) Suppose further that the random variables (X1, X2, ...) only take the values 1 and -1. Show
that the inequality of (a) can be simplified to

Pr

[
|X
n

− µ| ≥ ϵ

]
≤ 1− µ2

nϵ2
.

Answer.

(a)

(b)

Problem 5 (Reductions, 2pt each). For each sub-problem, indicate if the state proposition is True
or False, and provide a brief (one or two sentences) justification for your answer.

We use the notations as follows. Let F,G : {0, 1}∗ → {0, 1}∗ be two functions. We say that F
reduces to G, denoted by F ≤p G, if there is a polynomial-time computable function R : {0, 1}∗ →
{0, 1}∗ such that for every x ∈ {0, 1}∗, F (x) = G(R(x)). Let P be the class of all polynomial-time
computable function.
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(a) F ≤p G and G ∈ P implies F ∈ P.

(b) F ≤p G and F ∈ P implies G ∈ P.

(c) F ≤p G and G ≤p F implies F ∈ P.

Answer.

(a)

(b)

(c)

Acknowledgement

Replace this with your collaborators and resources like below (if you did not have any, replace
this with None).

Problem 1 is inspired by a discussion with Jonathan, who explained Extended Euclidean Al-
gorithm to me.

Problem 2: I used ChatGPT with the prompt “teach me DMT2” and obtained XXX.

Problem 3: Step X is followed by [KL21, Theorem Y, page Z].

References

[KL21] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press,
Massachusetts, 3 edition, 2021.

4 of 4


